This section contains 1,895 words (approx. 7 pages at 300 words per page) |
Overview
Great strides were made in the 1800s toward moving back to a rigorous, logical base for mathematics. Essential to this effort was progress in number theory. Joseph Liouville (1809-1882) expanded the understanding of real numbers when he proved the existence of transcendental numbers. Later, Charles Hermite (1822-1901) demonstrated that e, the natural logarithmic constant, was a transcendental number. In 1882, Ferdinand Lindemann (1852-1939) answered "no" to the classic challenge, "Can the circle be squared?" when he proved that pi (π), the ratio of the circumference of any circle to its diameter, was also a transcendental number. Julius Wilhelm Richard Dedekind (1831-1916) completed the view of real numbers by explaining them in terms of irrational and irrational numbers. The establishment and characterization of real numbers extended the rigor of mathematics, improving the quality of proofs. It affirmed the concept of limits and...
This section contains 1,895 words (approx. 7 pages at 300 words per page) |