It is very difficult at first to picture such a black thing as carbon making part of delicate leaves and beautiful flowers, and still more of pure white sugar. But we can make an experiment by which we can draw the hydrogen and oxygen out of common loaf sugar, and then you will see the carbon stand out in all its blackness. I have here a plate with a heap of white sugar in it. I pour upon it first some hot water to melt and warm it, and then some strong sulphuric acid. This acid does nothing more than simply draw the hydrogen and oxygen out. See! in a few moments a black mass of carbon begins to rise, all of which has come out of the white sugar you saw just now. (The common dilute sulphuric acid of commerce is not strong enough for this experiment, but pure sulphuric acid can be secured from any chemist. Great care must be taken in using it, as it burns everything it touches.) You see, then, that from the whitest substance in plants we can get this black carbon; and in truth, one-half of the dry part of every plant is composed of it.
Now look at my plant again, and tell me if we have not already found a curious history? Fancy that you see the water creeping in at the roots, oozing up from cell to cell till it reaches the leaves, and there meeting the carbon which has just come out of the air, and being worked up with it by the sun-waves into starch, or sugar, or oils.
But meanwhile, how is new protoplasm to be formed? for without this active substance none of the work can go on. Here comes into use a lazy gas we spoke of in Lecture III. There we thought that nitrogen was of no use except to float oxygen in the air, but here we shall find it very useful. So far, as we know, plants cannot take up nitrogen out of the air, but they can get it out of the ammonia which the water brings in at their roots.
Ammonia, you will remember, is a strong-smelling gas, made of hydrogen and nitrogen, and which is often almost stifling near a manure-heap. When you manure a plant you help it to get this ammonia, but at any time it gets some from the soil and also from the rain-drops which bring it down in the air. Out of this ammonia the plant takes the nitrogen and works it up with the three elements, carbon, oxygen, and hydrogen, to make the substances called albuminoids, which form a large part of the food of the plant, and it is these albuminoids which go to make protoplasm. You will notice that while the starch and other substances are only made of three elements, the active protoplasm is made of these three added to a fourth, nitrogen, and it also contains phosphorus and sulphur.
And so hour after hour and day after day our primrose goes on pumping up water and ammonia from its roots to its leaves, drinking in carbonic acid from the air, and using the sun-waves to work them all up into food to be sent to all parts of its body. In this way these leaves act, you see, as the stomach of the plant, and digest its food.