At this point we must observe—for it is a matter of great importance—that in the operations of the brewer there is always a time when the yeasts are in this state of vigorous youth of which we have been speaking, acquired under the influence of free oxygen, since all the worts and the yeasts of commerce are necessarily manipulated in contact with air, and so impregnated more or less with oxygen. The yeast immediately seizes upon this gas and acquires a state of freshness and activity, which permits it to live afterwards out of contact with air, and to act as a ferment. Thus, in ordinary brewery practice, we find the yeast already formed in abundance even before the earliest external signs of fermentation have made their appearance. In this first phase of its existence, yeast lives chiefly like an ordinary fungus.
From the same circumstances it is clear that the brewer’s fermentations may, speaking quite strictly, last for an indefinite time, in consequence of the unceasing supply of fresh wort, and from the fact, moreover, that the exterior air is constantly being introduced during the work, and that the air contained in the fresh worts keeps up the vital activity of the yeast, as the act of breathing keeps up the vigour and life of cells in all living beings. If the air could not renew itself in any way, the vital activity which the cells originally received, under its influence, would become more and more exhausted, and the fermentation eventually come to an end.
We may recount one of the results obtained in other experiments similar to the last, in which, however, we employed yeast which was still older than that used for our experiment with flask A (Fig. 2), and moreover took still greater precautions to prevent the presence of air. Instead of leaving the flask, as well as the dish, to cool slowly, after having expelled all air by boiling, we permitted the liquid in the dish to continue boiling whilst the flask was being cooled by artificial means; the end of the escape tube was then taken out of the still boiling dish and plunged into the mercury trough. In impregnating the liquid, instead of employing the contents of the small cylindrical funnel whilst still in a state of fermentation, we waited until this was finished. Under these conditions, fermentation was still going on in our flask, after a lapse of three months. We stopped it and found that 0.255 gramme (3.9 grains)