The Power of Movement in Plants eBook

Francis Darwin
This eBook from the Gutenberg Project consists of approximately 654 pages of information about The Power of Movement in Plants.

The Power of Movement in Plants eBook

Francis Darwin
This eBook from the Gutenberg Project consists of approximately 654 pages of information about The Power of Movement in Plants.

As long as an arched hypocotyl or epicotyl remains buried beneath the ground, the two legs cannot separate from one another, except to a slight extent from the yielding of the soil; but as soon as the arch rises above the ground, or at an earlier period if [page 101] the pressure of the surrounding earth be artificially removed, the arch immediately begins to straighten itself.  This no doubt is due to growth along the whole inner surface of both legs of the arch; such growth being checked or prevented, as long as the two legs of the arch are firmly pressed together.  When the earth is removed all round an arch and the two legs are tied together at their bases, the growth on the under side of the crown causes it after a time to become much flatter and broader than naturally occurs.  The straightening process consists of a modified form of circumnutation, for the lines described during this process (as with the hypocotyl of Brassica, and the epicotyls of Vicia and Corylus) were often plainly zigzag and sometimes looped.  After hypocotyls or epicotyls have emerged from the ground, they quickly become perfectly straight.  No trace is left of their former abrupt curvature, excepting in the case of Allium cepa, in which the cotyledon rarely becomes quite straight, owing to the protuberance developed on the crown of the arch.

The increased growth along the inner surface of the arch which renders it straight, apparently begins in the basal leg or that which is united to the radicle; for this leg, as we often observed, is first bowed backwards from the other leg.  This movement facilitates the withdrawal of the tip of the epicotyl or of the cotyledons, as the case may be, from within the seed-coats and from the ground.  But the cotyledons often emerge from the ground still tightly enclosed within the seed-coats, which apparently serve to protect them.  The seed-coats are afterwards ruptured and cast off by the swelling of the closely conjoined cotyledons, and not by any movement or their separation from one another.

Nevertheless, in some few cases, especially with the [page 102] Cucurbitaceae, the seed-coats are ruptured by a curious contrivance, described by M. Flahault.* A heel or peg is developed on one side of the summit of the radicle or base of the hypocotyl; and this holds down the lower half of the seed-coats (the radicle being fixed into the ground) whilst the continued growth of the arched hypocotyl forced upwards the upper half, and tears asunder the seed-coats at one end, and the cotyledons are then easily withdrawn.

Fig. 62.  Cucurbita ovifera:  germinating seed, showing the heel or peg projecting on one side from summit of radicle and holding down lower tip of seed-coats, which have been partially ruptured by the growth of the arched hypocotyl.

Copyrights
Project Gutenberg
The Power of Movement in Plants from Project Gutenberg. Public domain.