The Power of Movement in Plants eBook

Francis Darwin
This eBook from the Gutenberg Project consists of approximately 654 pages of information about The Power of Movement in Plants.

The Power of Movement in Plants eBook

Francis Darwin
This eBook from the Gutenberg Project consists of approximately 654 pages of information about The Power of Movement in Plants.
previously been exposed to daylight.  We have seen several analogous cases with the nyctitropic movements of leaves.  A striking instance was observed in the case of the periodic movements of the cotyledons of a Cassia; in the morning a pot was placed in an obscure part of a room, and all the cotyledons rose up closed; another pot had stood in the sunlight, and [page 566] the cotyledons of course remained expanded; both pots were now placed close together in the middle of the room, and the cotyledons which had been exposed to the sun, immediately began to close, while the others opened; so that the cotyledons in the two pots moved in exactly opposite directions whilst exposed to the same degree of light.

We found that if seedlings, kept in a dark place, were laterally illuminated by a small wax taper for only two or three minutes at intervals of about three-quarters of an hour, they all became bowed to the point where the taper had been held.  We felt much surprised at this fact, and until we had read Wiesner’s observations, we attributed it to the after-effects of the light; but he has shown that the same degree of curvature in a plant may be induced in the course of an hour by several interrupted illuminations lasting altogether for 20 m., as by a continuous illumination of 60 m.  We believe that this case, as well as our own, may be explained by the excitement from light being due not so much to its actual amount, as to the difference in amount from that previously received; and in our case there were repeated alternations from complete darkness to light.  In this, and in several of the above specified respects, light seems to act on the tissues of plants, almost in the same manner as it does on the nervous system of animals.  There is a much more striking analogy of the same kind, in the sensitiveness to light being localised in the tips of the cotyledons of Phalaris and Avena, and in the upper part of the hypocotyls of Brassica and Beta; and in the transmission of some influence from these upper to the lower parts, causing the latter to bend towards the light.  This influence is also trans-[page 567] mitted beneath the soil to a depth where no light enters.  It follows from this localisation, that the lower parts of the cotyledons of Phalaris, etc., which normally become more bent towards a lateral light than the upper parts, may be brightly illuminated during many hours, and will not bend in the least, if all light be excluded from the tip.  It is an interesting experiment to place caps over the tips of the cotyledons of Phalaris, and to allow a very little light to enter through minute orifices on one side of the caps, for the lower part of the cotyledons will then bend to this side, and not to the side which has been brightly illuminated during the whole time.  In the case of the radicles of Sinapis alba, sensitiveness to light also resides in the tip, which, when laterally illuminated, causes the adjoining part of the root to bend apheliotropically.

Copyrights
Project Gutenberg
The Power of Movement in Plants from Project Gutenberg. Public domain.