The opinion that the bodies which we see and handle, which we can set in motion or leave at rest, which we can break in pieces and destroy, are composed of smaller bodies which we cannot see or handle, which are always in motion, and which can neither be stopped nor broken in pieces, nor in any way destroyed or deprived of the least of their properties, was known by the name of the Atomic theory. It was associated with the names of Democritus, Epicurus, and Lucretius, and was commonly supposed to admit the existence only of atoms and void, to the exclusion of any other basis of things from the universe.
In many physical reasonings and mathematical calculations we are accustomed to argue as if such substances as air, water, or metal, which appear to our senses uniform and continuous, were strictly and mathematically uniform and continuous.
We know that we can divide a pint of water into many millions of portions, each of which is as fully endowed with all the properties of water as the whole pint was; and it seems only natural to conclude that we might go on subdividing the water for ever, just as we can never come to a limit in subdividing the space in which it is contained. We have heard how Faraday divided a grain of gold into an inconceivable number of separate particles, and we may see Dr Tyndall produce from a mere suspicion of nitrite of butyle an immense cloud, the minute visible portion of which is still cloud, and therefore must contain many molecules of nitrite of butyle.
But evidence from different and independent sources is now crowding in upon us which compels us to admit that if we could push the process of subdivision still further we should come to a limit, because each portion would then contain only one molecule, an individual body, one and indivisible, unalterable by any power in nature.
Even in our ordinary experiments on very finely divided matter we find that the substance is beginning to lose the properties which it exhibits when in a large mass, and that effects depending on the individual action of molecules are beginning to become prominent.
The study of these phenomena is at present the path which leads to the development of molecular science.
That superficial tension of liquids which is called capillary attraction is one of these phenomena. Another important class of phenomena are those which are due to that motion of agitation by which the molecules of a liquid or gas are continually working their way from one place to another, and continually changing their course, like people hustled in a crowd.
On this depends the rate of diffusion of gases and liquids through each other, to the study of which, as one of the keys of molecular science, that unwearied inquirer into nature’s secrets, the late Prof. Graham, devoted such arduous labour.