153. Though what has been said may suffice to show what ought to be determined with relation to the object of geometry, I shall nevertheless, for the fuller illustration thereof, consider the case of an intelligence, or unbodied spirit, which is supposed to see perfectly well, i.e. to have a clear perception of the proper and immediate objects of sight, but to have no sense of touch. Whether there be any such being in Nature or no is beside my purpose to inquire. It sufficeth that the supposition contains no contradiction in it. Let us now examine what proficiency such a one may be able to make in geometry. Which speculation will lead us more clearly to see whether the ideas of sight can possibly be the object of that science.
154. First, then, it is certain the aforesaid intelligence could have no idea of a solid, or quantity of three dimensions, which followeth from its not having any idea of distance. We indeed are prone to think that we have by sight the ideas of space and solids, which ariseth from our imagining that we do, strictly speaking, see distance and some parts of an object at a greater distance than others; which hath been demonstrated to be the effect of the experience we have had, what ideas of touch are connected with such and such ideas attending vision: but the intelligence here spoken of is supposed to have no experience of touch. He would not, therefore, judge as we do, nor have any idea of distance, outness, or profundity, nor consequently of space or body, either immediately or by suggestion. Whence it is plain he can have no notion of those parts of geometry which relate to the mensuration of solids and their convex or concave surfaces, and contemplate the properties of lines generated by the section of a solid. The conceiving of any part whereof is beyond the reach of his faculties.
155. Farther, he cannot comprehend the manner wherein geometers describe a right line or circle; the rule and compass with their use being things of which it is impossible he should have any notion: nor is it an easier matter for him to conceive the placing of one plane or angle on another, in order to prove their equality: since that supposeth some idea of distance or external space. All which makes it evident our pure intelligence could never attain to know so much as the first elements of plane geometry. And perhaps upon a nice inquiry it will be found he cannot even have an idea of plane figures any more than he can of solids; since some idea of distance is necessary to form the idea of a geometrical plane, as will appear to whoever shall reflect a little on it.
156. All that is properly perceived by the visive faculty amounts to no more than colours, with their variations and different proportions of light and shade. But the perpetual mutability and fleetingness of those immediate objects of sight render them incapable of being managed after the manner of geometrical figures; nor is it in any degree useful that they should. It is true there are divers of them perceived at once, and more of some and less of others: but accurately to compute their magnitude and assign precise determinate proportions between things so variable and inconstant, if we suppose it possible to be done, must yet be a very trifling and insignificant labour.