The electric arc not only supplies light, but heat of great intensity which the electrical engineer as well as the pure scientist has found so valuable for many practical operations. It is of course obvious that for most chemical operations, and especially in the field of metallurgy, heat is required for the separation of combinations of various elements, for their purification, as well as for the combination with other elements into alloys or compounds of direct utility. The usual method of generating heat is by the combustion of some fuel, such as coal, coke, gas or oil, and this has been utilized for hundreds of years in smelting metals and ores and in refining the material from a crude state. Now it may happen that a nation or region may be rich in metalliferous ores, but possess few, if any, coal deposits. Accordingly the ore must be mined and transported considerable distances for treatment and the advantages of manufacturing industries are lost to the neighborhood of its original production. But if water power is available, as it is in many mountainous countries where various ores are found, then this power can be transformed into electricity which is available as power not only in various manufacturing operations, but for primary metallurgical work in smelting the ores and obtaining the metal therefrom. A striking instance of this is the kingdom of Sweden, which contains but little coal, yet is rich in minerals and in water power, so that its waterfalls have been picturesquely alluded to as the country’s “white coal.” Likewise, at Niagara Falls a portion of the vast water power developed there has been used in the manufacture of aluminum, calcium carbide, carborundum, and other materials, while at other points in the United States and Canada, not to mention Europe, large industries where electricity is used for metallurgical or chemical work are carried on and the erection of new plants is contemplated.
The application of electricity to metallurgical and chemical work has been, in nearly all cases, the result of scientific research, and elaborate experimental laboratories are maintained by the various corporations interested in the present or future use of electrical processes. It is recognized by many of the older workers in this field that electrical developments are bound to come in the near future, and while they have not installed such appliances in their works yet they are keeping close watch of present developments, and in many cases experimental investigation and research is being carried on where electrical methods have not yet been introduced generally into the plant.