2. “They may take place from waters at any temperature and any pressure, but mainly from those at high temperature and under heavy pressure, because, on account of their great solvent power, such waters are heavily freighted with metals.”
3. “The depositing waters may be moving in any direction, up-coming, horizontally moving, or even sometimes down-going, but mainly up-coming; because by losing heat and pressure at every step such waters are sure to deposit abundantly.”
4. “Deposits may take place in any kind of waterways—in open fissures, in incipient fissures, joints, cracks, and even in porous sandstone, but especially in great open fissures, because these are the main highways of ascending waters from the greatest depths.”
5. “Deposits may be found in many regions and in many kinds of rocks, but mainly in mountain regions, and in metamorphic and igneous rocks, because the thermosphere is nearer the surface, and ready access thereto through great fissures is found mostly in these regions and in these rocks.”
These views are in accordance with nearly all modern research into this interesting and fruitful subject.
Among the theories which they discredit is that ore bodies may usually be assumed to become richer in depth. As applied to gold lodes the teaching of experience does not bear out this view.
If it be taken into account that the time in which most of our auriferous siliceous lodes were formed was probably that indicated in Genesis as before the first day or period when “the earth was without form and void, and darkness was upon the face of the deep,” it will be realised that the action we behold now taking place in a small way in volcanic regions, was probably then almost universal. The crust of the earth had cooled sufficiently to permit water to lie on its surface, probably in hot shallow seas, like the late Lake Rotomahana. Plutonic action would be very general, and volcanic mud, ash, and sand would be ejected and spread far and wide, which, sinking to the bottom of the water, may possibly be the origin of what we now designate the azoic or metamorphic slates and schists, as also the early Cambrian and Silurian strata. These, from the superincumbent weight and internal heat, became compacted, and, in some cases, crystallised, while at the same time, from the ingress of the surface waters to the heated regions below, probably millions of geysers were spouting their mineral impregnated waters in all directions; and in places where the crust was thin, explosions of super-heated steam caused huge upheavals, rifts, and chasms, into which these waters returned, to be again ejected, or to be the cause of further explosions. Later, as the cooling-process continued, there would be shrinkages of the earth’s crust causing other fissures; intrusive granites further dislocated and upheaved the slates. About this age, probably, when really dry land began to appear, came the first formation of mineral lodes, and the waters, heavily charged with silicates, carbonates of lime, sulphides, etc., in solution, commenced to deposit their contents in solid form when the heat and pressure were removed.