The Life of the Spider eBook

Jean Henri Fabre
This eBook from the Gutenberg Project consists of approximately 249 pages of information about The Life of the Spider.

The Life of the Spider eBook

Jean Henri Fabre
This eBook from the Gutenberg Project consists of approximately 249 pages of information about The Life of the Spider.

No, it is a reality in the service of life, a method of construction frequently employed in animal architecture.  The Mollusc, in particular, never rolls the winding ramp of the shell without reference to the scientific curve.  The first-born of the species knew it and put it into practice; it was as perfect in the dawn of creation as it can be to-day.

Let us study, in this connection, the Ammonites, those venerable relics of what was once the highest expression of living things, at the time when the solid land was taking shape from the oceanic ooze.  Cut and polished length-wise, the fossil shows a magnificent logarithmic spiral, the general pattern of the dwelling which was a pearl palace, with numerous chambers traversed by a siphuncular corridor.

To this day, the last representative of the Cephalopoda with partitioned shells, the Nautilus of the Southern Seas, remains faithful to the ancient design; it has not improved upon its distant predecessors.  It has altered the position of the siphuncle, has placed it in the centre instead of leaving it on the back, but it still whirls its spiral logarithmically as did the Ammonites in the earliest ages of the world’s existence.

And let us not run away with the idea that these princes of the Mollusc tribe have a monopoly of the scientific curve.  In the stagnant waters of our grassy ditches, the flat shells, the humble Planorbes, sometimes no bigger than a duckweed, vie with the Ammonite and the Nautilus in matters of higher geometry.  At least one of them, Planorbis vortex, for example, is a marvel of logarithmic whorls.

In the long-shaped shells, the structure becomes more complex, though remaining subject to the same fundamental laws.  I have before my eyes some species of the genus Terebra, from New Caledonia.  They are extremely tapering cones, attaining almost nine inches in length.  Their surface is smooth and quite plain, without any of the usual ornaments, such as furrows, knots or strings of pearls.  The spiral edifice is superb, graced with its own simplicity alone.  I count a score of whorls which gradually decrease until they vanish in the delicate point.  They are edged with a fine groove.

I take a pencil and draw a rough generating line to this cone; and, relying merely on the evidence of my eyes, which are more or less practised in geometric measurements, I find that the spiral groove intersects this generating line at an angle of unvarying value.

The consequence of this result is easily deduced.  If projected on a plane perpendicular to the axis of the shell, the generating lines of the cone would become radii; and the groove which winds upwards from the base to the apex would be converted into a plane curve which, meeting those radii at an unvarying angle, would be neither more nor less than a logarithmic spiral.  Conversely, the groove of the shell may be considered as the projection of this spiral on a conic surface.

Copyrights
Project Gutenberg
The Life of the Spider from Project Gutenberg. Public domain.