Where direct experiment is possible, however, it has many advantages over unaided observation. If one experiment does not enable us to observe the phenomenon satisfactorily, we may try again and again; whereas the mere observer, who wishes to study the bright spots on Mars, or a commercial crisis, must wait for a favourable opportunity. Again, in making experiments we can vary the conditions of the phenomenon, so as to observe its different behaviour in each case; whereas he who depends solely on observation must trust the bounty of nature to supply him with a suitable diversity of instances. It is a particular advantage of experiment that a phenomenon may sometimes be ‘isolated,’ that is, removed from the influence of all agents except that whose operation we desire to observe, or except those whose operation is already known: whereas a simple observer, who has no control over the conditions of the subject he studies, can never be quite sure that its movements or changes are not due to causes that have never been conspicuous enough to draw his attention. Finally, experiment enables us to observe coolly and circumspectly and to be precise as to what happens, the time of its occurrence, the order of successive events, their duration, intensity and extent.
But whether we proceed by observation or experiment, the utmost attainable exactness of measurements and calculation is requisite; and these presuppose some Unit, in multiples or divisions of which the result may be expressed. This unit cannot be an abstract number as in Arithmetic, but must be one something—an hour, or a yard, or a pound—according to the nature of the phenomenon to be measured. But what is an hour, or a yard or a pound? There must in each case be some constant Standard of reference to give assurance that the unit may always have the same value. “The English pound is defined by a certain lump of platinum preserved at Westminster.” The unit may be identical with the standard or some division or multiple of it; and, in measuring the same kind of phenomena, different units may be used for different purposes as long as each bears a constant relation to the standard. Thus, taking the rotation of the earth as the standard of Time, the convenient unit for long periods is a year (which is a multiple); for shorter periods, a day (which is identical); for shorter still, an hour (which is a division), or a second, or a thousandth of a second. (See Jevons’ Principles of Science, ch. 14.)
Sec. 6. The principle of Causation is the formal ground of Induction; and the Inductive Canons derived from it are means of testing the formal sufficiency of observations to justify the statement of a Law. If we can observe the process of cause and effect in nature we may generalise our observation into a law, because that process is invariable. First, then, can we observe the course of cause and effect? Our power to do so is limited by the refinement of