All this variety of tone and color makes of a telescopic view of Jupiter a picture that will not quickly fade from the memory; while if an instrument of considerable power is used, so that the wonderful details of the belts, with their scalloped edges, their diagonal filaments, their many divisions, and their curious light and dark spots, are made plain, the observer is deeply impressed with the strangeness of the spectacle, and the more so as he reflects upon the enormous real magnitude of that which is spread before his eye. The whole earth flattened out would be but a small blotch on that gigantic disk!
Then, the visible rotation of the great Jovian globe, whose effects become evident to a practised eye after but a few minutes’ watching, heightens the impression. And the presence of the four satellites, whose motions in their orbits are also evident, through the change in their positions, during the course of a single not prolonged observation, adds its influence to the effectiveness of the scene. Indeed, color and motion are so conspicuous in the immense spectacle presented by Jupiter that they impart to it a powerful suggestion of life, which the mind does not readily divest itself of when compelled to face the evidence that Jupiter is as widely different from the earth, and as diametrically opposed to lifelike conditions, as we comprehend them, as a planet possibly could be.
The great belts lie in latitudes about corresponding to those in which the trade-winds blow upon the earth, and it has often been suggested that their existence indicates a similarity between the atmospheric circulation of Jupiter and that of the world in which we live. No doubt there are times when the earth, seen with a telescope from a distant planet, would present a belted appearance somewhat resembling that of Jupiter, but there would almost certainly be no similar display of colors in the clouds, and the latter would exhibit no such persistence in general form and position as characterizes those of Jupiter. Our clouds are formed by the action of the sun, producing evaporation of water; on Jupiter, whose mean distance from the sun is more than five times as great as ours, the intensity of the solar rays is reduced to less than one twenty-fifth part of their intensity on the earth, so that the evaporation can not be equally active there, and the tendency to form aerial currents and great systems of winds must be proportionally slight. In brief, the clouds of Jupiter are probably of an entirely different origin from that of terrestrial clouds, and rather resemble the chaotic masses of vapor that enveloped the earth when it was still in a seminebulous condition, and before its crust had formed.