Scientific American Supplement, No. 315, January 14, 1882 eBook

This eBook from the Gutenberg Project consists of approximately 129 pages of information about Scientific American Supplement, No. 315, January 14, 1882.

Scientific American Supplement, No. 315, January 14, 1882 eBook

This eBook from the Gutenberg Project consists of approximately 129 pages of information about Scientific American Supplement, No. 315, January 14, 1882.

Without entering into a complete history (for it is beyond the task which we have here assumed),[1] it will not be without interest to recall how, when manganese was first obtained in a pure state, that it was supposed that it would remain simply an object of curiosity in the laboratory; but when its presence was proved in spiegeleisen and when it came to be considered an essential ingredient in the best German and English works for cutlery steel (where it is thrown into the crucible as the peroxide), then we find that its qualities become better and better appreciated; and it is surprising that no technologist ever devoted his attention to the production of manganese alloys.

   [Footnote 1:  See Engineering, May 27, 1881]

It was not till after the investigations of Dr. Percy, Tamm, Prieger, and Bessemer, who employed crucibles for the production of these alloys, that Hendersen received the idea of utilizing it in the Siemens furnace.  So important a compound could not remain unemployed.  The works at Terre Noire produced, by the Martin furnace, for a number of years, ferro-manganese of 70 to 80 per cent.  Shortly afterward, when competition in the market was established, the works at Carniola and at Carinthia, some English factories, and more especially the works at Saint-Louis, near Marseilles, of Terre Noire, of Montlucon, etc., successfully adopted the manufacture of ferro-manganese with the blast furnace, which is without doubt the method best adapted for the reduction of metallic oxides, as well in consideration of the reactions as from an economical point of view.  Before very long it was possible to produce, by the blast furnace, alloys of 40, 60, 80, and even 86 per cent., in using the hot air apparatus of Siemens, Cowper, and Witwell, with the employment of good coke, and principally by calculating the charges for the fusion in such a manner as to obtain an extra basic and refractory slag.

Following in the same path, the Phoenix Co., of Ruhrort, sent, in 1880, to the Metallurgical Exposition of Dusseldorf, samples of ferro-manganese obtained in a blast furnace, with an extra basic slag in which the silica was almost entirely replaced by alumina.  The works of L’Esperance, at Oberhausen, exhibited similar products, quite pure as to sulphur and phosphorus, and they had a double interest at the exhibition, in consideration of the agitation over the Thomas and Gilchrist process (see the discussions which were raised at the meeting of the Iron and Steel Institute).  This process unfortunately requires for its prompt success the use of a very large quantity of spiegel or of ferro-manganese, in order to sufficiently carburize and deoxidize the burnt iron, which is the final product of the blowing.

The production of ferro-manganese by the blast furnace depends upon the following conditions.

    1.  A high temperature.

    2.  On a proper mixture of the iron ores and the manganese.

Copyrights
Project Gutenberg
Scientific American Supplement, No. 315, January 14, 1882 from Project Gutenberg. Public domain.