We have succeeded in attaining our object at a temperature below that at which the gases leave my producers, viz., at 350 deg. C. to 450 deg. C., by passing the producer gases, still containing a considerable excess of steam, over metallic nickel or cobalt. These metals have the extraordinary property of decomposing almost completely, even at the low temperature named, carbonic oxide into carbon and carbonic acid and hydrocarbons into carbon and hydrogen.
In order to carry the process out with small quantities of nickel and cobalt, we impregnate pumice stone or similar material with a salt of nickel or cobalt, and reduce this by means of hydrogen or producer gas. These pieces of pumice stone are filled into a retort or chamber and the hot gases passed through them. As the reaction produces heat, it is not necessary to heat the chambers or retorts from the outside when the necessary temperature has once been attained. This process has not yet been carried out on a large scale, but the laboratory experiments have been so satisfactory that we have no doubt as to its complete success. It will enable us to obtain gases containing 36 per cent. to 40 per cent. of hydrogen and practically free from carbonic oxide and hydrocarbons from producer gas at a very small cost, and thus to make the latter suitable for the production of electricity by our gas battery. We obtain, as stated before, 50 per cent. of the energy in the hydrogen absorbed in the battery in the form of electricity, while, if the same gas was consumed under steam boilers to make steam, which, as I have shown before, could in this way be raised cheaper than by burning fuel direct, and if this steam was turned into motive power by first-rate steam engines, and the motive power converted into electricity by a dynamo, the yield of electricity would in the most favorable case not exceed 8 per cent. of the energy in the gas. I hope that this kind of battery will one day enable us to perform chemical operations by electricity on the largest scale, and to press this potent power into the service of the chemical industries.
The statement is frequently made that “Necessity is the mother of invention.” If this has been the case in the past, I think it is no longer so in our days, since science has made us acquainted with the correlation of forces, teaching us what amount of energy we utilize and how much we waste in our various methods for attaining certain objects, and indicating to us where and in what direction and how far improvement is possible; and since the increase in our knowledge of the properties of matter enables us to form an opinion beforehand as to the substances we have available for obtaining a desired result.
We can now foresee, in most cases, in what direction progress in technology will move, and in consequence the inventor is now frequently in advance of the wants of his time. He may even create new wants, to my mind a distinct step in the development of human culture. It can then no longer be stated that “Necessity is the mother of invention;” but I think it may truly be said that the steady, methodical investigation of natural phenomena is the father of industrial progress.