Scientific American Supplement, No. 717, September 28, 1889 eBook

This eBook from the Gutenberg Project consists of approximately 147 pages of information about Scientific American Supplement, No. 717, September 28, 1889.

Scientific American Supplement, No. 717, September 28, 1889 eBook

This eBook from the Gutenberg Project consists of approximately 147 pages of information about Scientific American Supplement, No. 717, September 28, 1889.
nearly the same quantity as is used in producing a ton of caustic soda by the Le Blanc process—­a product not more than half the value of ammonium sulphate.  At present prices in Northwich this fuel represents a value of 35s.  If we add to this the extra cost of labor over and above the cost of burning fuel in ordinary fireplaces, the cost of sulphuric acid, bags, etc., we come to a total of 4l. 10s. to 5l. per ton of sulphate of ammonia, which at the present selling price of this article, say 12l. per ton, leaves, after a liberal allowance for wear and tear of plant, an ample margin of profit.  With a rise in the price of fuel, this margin, however, rapidly decreases, and the working of the process will, of course, be much more expensive on a small scale, as will also be the cost of the plant, which under all circumstances is very considerable.  The great advantages incidental to this process over and above the profit arising from the manufacture of sulphate of ammonia, viz., the absolute impossibility of producing smoke and the great regularity of the heating resulting from the use of gas, are, therefore, as far as I can see for the present, only available for large consumers of cheap fuel.

We have tried many experiments to produce hydrochloric acid in the producers, with the hope of thereby increasing the yield of ammonia, as it is well known that ammonium chloride vapor, although it consists of a mixture of ammonia gas and hydrochloric acid gas, is not at all dissociated at temperatures at which the dissociation of ammonia alone has already taken place to a considerable extent.

I had also hoped that I might in this way produce the acid necessary to combine with the ammonia at very small cost.  For this purpose we moistened the fuel used with concentrated brine, and also with the waste liquors from the ammonia soda manufacture, consisting mainly of chloride of calcium; and we also introduced with the fuel balls made by mixing very concentrated chloride of calcium solution with clay, which allowed us to produce a larger quantity of hydrochloric acid in the producer than by the other methods.

We did in this way succeed in producing hydrochloric acid sometimes less and sometimes more than was necessary to combine with the ammonia, but we did not succeed in producing with regularity the exact amount of acid necessary to neutralize the ammonia.  When the ammonia was in excess, we had therefore to use sulphuric acid as before to absorb this excess, and we were never certain that sometimes the hydrochloric acid might not be in excess, which would have necessitated to construct the whole plant so that it could have resisted the action of weak hydrochloric acid—­a difficulty which I have not ventured to attack.  The yield of ammonia was not in any case increased by the presence of the hydrochloric acid.  This explains itself if we consider that there is only a very small amount of ammonia and hydrochloric acid

Copyrights
Project Gutenberg
Scientific American Supplement, No. 717, September 28, 1889 from Project Gutenberg. Public domain.