The Chemistry of Hat Manufacturing eBook

This eBook from the Gutenberg Project consists of approximately 158 pages of information about The Chemistry of Hat Manufacturing.

The Chemistry of Hat Manufacturing eBook

This eBook from the Gutenberg Project consists of approximately 158 pages of information about The Chemistry of Hat Manufacturing.

The next stage of the Leblanc process is the manufacture of “black ash,” or crude sodium carbonate.  This is usually done in large cylindrical revolving furnaces, through, which flames from a fire-grate, or from the burning of gaseous fuel, pass; the waste heat is utilised for boiling down “black ash” liquor, obtained by lixiviating the black ash.  A mixture of salt-cake, limestone or chalk (calcium carbonate), and powdered coal or coal slack is charged into the revolving cylinder; during the process the mass becomes agglomerated, and the final product is what is known as a “black-ash ball,” consisting chiefly of crude sodium carbonate and calcium sulphide, but containing smaller quantities of many other substances.  The soda ash or sodium carbonate is obtained from the black ash by lixiviating with water, and after various purification processes, the solution is boiled down, as previously stated, by the waste heat of the black-ash furnace.  The alkali is sold in various forms as soda ash, soda crystals, washing soda, etc.

Caustic soda is manufactured from solution of carbonate of soda by causticising, that is, treatment with caustic lime or quicklime.

It will have been noticed that one of the chief reagents in the Leblanc process is the sulphur used in the form of brimstone or as pyrites for making vitriol in the first stage; this sulphur goes through the entire process; from the vitriol it goes to form a constituent of the salt-cake, and afterwards of the calcium sulphide contained in the black ash.  This calcium sulphide remains as an insoluble mass when the carbonate of soda is extracted from the black ash, and forms the chief constituent of the alkali waste, which until the year 1880 could be seen in large heaps around chemical works.  Now, however, by means of treatment with kiln gases containing carbonic acid, the sulphur is extracted from the waste in the form of hydrogen sulphide, which is burnt to form vitriol, or is used for making pure sulphur; and so what was once waste is now a source of profit.

Ammonia-Soda Process of Alkali Manufacture.—­This process depends upon the fact that when carbonic acid is forced, under pressure, into a saturated solution of ammonia and common salt, sodium bicarbonate is precipitated, whilst ammonium chloride or “sal-ammoniac” remains dissolved in the solution.  The reaction was discovered in 1836 by a Scotch chemist named John Thom, and small quantities of ammonia-soda were made at that time by the firm of McNaughton & Thom.  The successful carrying out of the process on the large scale depends principally upon the complete recovery of the expensive reagent, ammonia, and this problem was only solved within comparatively recent years by Solvay.  The process has been perfected and worked with great success in England by Messrs. Brunner, Mond, & Co., and has proved a successful rival to the Leblanc process.

Alkali is also produced to some extent by electrolytic processes, depending upon the splitting up of a solution of common salt into caustic soda and chlorine by the use of an electric current.

Copyrights
Project Gutenberg
The Chemistry of Hat Manufacturing from Project Gutenberg. Public domain.