Some Mooted Questions in Reinforced Concrete Design eBook

This eBook from the Gutenberg Project consists of approximately 181 pages of information about Some Mooted Questions in Reinforced Concrete Design.

Some Mooted Questions in Reinforced Concrete Design eBook

This eBook from the Gutenberg Project consists of approximately 181 pages of information about Some Mooted Questions in Reinforced Concrete Design.
would be more than twice the shear which causes it.  Therefore, these curved rods, assuming them to be of sufficient size to take, as a vertical component, the shear on any vertical plane between the point where it slopes 30 deg. and its point of maximum slope, would need to be spaced at, approximately, one-half the depth of the beam.  Straight rods of equivalent strength, at 45 deg. with the axis of the beam, at this same spacing (which would be ample), would be 10% less in length.

Mr. Godfrey states: 

“Of course a reinforcing rod in a concrete beam receives its stress by increments imparted by the grip of the concrete; but these increments can only be imparted where the tendency of the concrete is to stretch.”

He then overlooks the fact that at the end of a beam, such as he has shown, the maximum tension is diagonal, and at the neutral axis, not at the bottom; and the rod is in the best position to resist failure on the plane, AB, if its end is sufficiently well anchored.  That this rod should be anchored is, as he states, undoubtedly so, but his implied objection to a bent end, as opposed to a nut, seems to the writer to be unfounded.  In some recent tests, on rods bent at right angles, at a point 5 diameters distant from the end, and with a concrete backing, stress was developed equal to the bond stress on a straight rod embedded for a length of about 30 diameters, and approximately equal to the elastic limit of the rod, which, for reinforcing purposes, is its ultimate stress.

Concerning the vertical stirrups to which Mr. Godfrey refers, there is no doubt that they strengthen beams against failure by diagonal tension or, as more commonly known, shear failures.  That they are not effective in the beam as built is plain, for, if one considers a vertical plane between the stirrups, the concrete must resist the shear on this plane, unless dependence is placed on that in the longitudinal reinforcement.  This, the author states, is often done, but the practice is unknown to the writer, who does not consider it of any value; certainly the stirrups cannot aid.

Suppose, however, that the diagonal tension is above the ultimate stress for the concrete, failure of the concrete will then occur on planes perpendicular to the line of maximum tension, approximately 45 deg. at the end of the beam.  If the stirrups are spaced close enough, however, and are of sufficient strength so that these planes of failure all cut enough steel to take as tension the vertical shear on the plane, then these cracks will be very minute and will be distributed, as is the case in the center of the lower part of the beam.  These stirrups will then take as tension the vertical shear on any plane, and hold the beam together, so that the friction on these planes will keep up the strength of the concrete in horizontal shear.  The concrete at the end of a simple beam is better able to take horizontal shear than vertical,

Copyrights
Project Gutenberg
Some Mooted Questions in Reinforced Concrete Design from Project Gutenberg. Public domain.