5 Desargues, Bruillon-project
d’une atteinte aux evenements des
rencontres d’un
cone avec un plan. 1639. Edited and analyzed by
Poudra, 1864.
6 The term ‘pole’
was first introduced, in the sense in which we have
used it, in 1810,
by a French mathematician named Servois (Gergonne,
Annales des
Matheematiques, I, 337), and the corresponding
term
‘polar’
by the editor, Gergonne, of this same journal three
years
later.
7 Euler, Introductio in analysin infinitorum, Appendix, cap. V. 1748.
8 OEuvres de Desargues, t. II, 132.
9 OEuvres de Desargues, t. II, 370.
10 OEuvres de Descartes, t. II, 499.
11 OEuvres de Pascal, par Brunsehvig et Boutroux, t. I, 252.
12 Chasles, Histoire de la Geometrie, 70.
13 OEuvres de Desargues, t. I, 231.
14 See Ball, History of Mathematics, French edition, t. II, 233.
15 Newton, Principia, lib. i, lemma XXI.
16 Maclaurin, Philosophical Transactions
of the Royal Society of
London, 1735.
17 Monge, Geometrie Descriptive. 1800.
18 Poncelet, Traite des Proprietes
Projectives des Figures. 1822. (See
p. 357, Vol.
II, of the edition of 1866.)
19 Gergonne, Annales de Mathematiques, XVI, 209. 1826.
20 Steiner, Systematische Ehtwickelung
der Abhaengigkeit geometrischer
Gestalten von
einander. 1832.
21 Von Staudt, Geometrie der Lage. 1847.
22 Reye, Geometrie der Lage. Translated by Holgate, 1897.
23 Ball, loc. cit. p. 261.