Pressure, Resistance, and Stability of Earth eBook

This eBook from the Gutenberg Project consists of approximately 87 pages of information about Pressure, Resistance, and Stability of Earth.

Pressure, Resistance, and Stability of Earth eBook

This eBook from the Gutenberg Project consists of approximately 87 pages of information about Pressure, Resistance, and Stability of Earth.
some tests of the pressure of this silt in normal air for the late W.R.  Hutton, M. Am.  Soc.  C. E. A hole, 12 in. square, was cut through the brickwork and the iron lining, just back of the lock in the north tube (in normal air), and about 1000 ft. from the New Jersey shore.  It was found that the silt had become so firm that it did not flow into the opening.  Later, a 4-in. collar and piston were built into the opening, and, during a period covering at least 3 months, constant observations showed that no pressure came upon it; in fact, it was stated that the piston was frequently worked back and forth to induce pressure, but no response was obtained during all this period.  The conclusion must then be drawn that when construction, with its attendant disturbance, has stopped, the solid material surrounding structures tends to compact itself more or less, and solidify, according as it is more or less porous, forming in many instances what may be virtually a compact arch shutting off a large percentage of the normal, and some percentage even of the aqueous, pressure.

That the pressure of normally dry material cannot be measured through small openings can be verified by any one who will examine such material back of bracing showing evidences of heavy pressure.  The investigator will find that, if this material is free from water pressure, paper stuffed lightly into small openings will hold back indefinitely material which in large masses has frequently caused bracing to buckle and sheeting planks to bend and break; and the writer reiterates that such experiments should be made in trenches sheeted with horizontal sheeting bearing against short vertical rangers and braces giving horizontal sections absolutely detached and independent of each other.  In no other way can such experiments be of real value (and even then only when made on a large scale) to determine conclusively the pressure of earth on trenches.

As to the questions of the relative thrust of materials under various angles of repose, and of the necessity of dividing by the tangent, etc.; these, to the writer, seem to be merely the solution of problems in simple graphics.

The writer believes that if Mr. Goodrich will make, even on a small scale, some of the experiments noted by the writer, he will be convinced that many of the assumptions which he cannot at present endorse are based on fact, and his co-operation will be welcomed with the greatest interest.  Among the experiments which he is asked to make is the one in dry sand, noted as Experiment No. 3, whereby it can be shown very conclusively that additional back-fill will result in increased arching stability, on an arch which would collapse under lighter loading.

The writer is indebted to Mr. Goodrich for pointing out some errors in omission and in typography (now corrected), and for his hearty concurrence in some of the assumptions which the writer believed would meet with greatest disapproval.

Copyrights
Project Gutenberg
Pressure, Resistance, and Stability of Earth from Project Gutenberg. Public domain.