side thrust should be considered also as a factor.
The thrust against the side of a tunnel in dry sand
having a flat angle of repose will necessarily be greater
than in very moist sand or clay, which stands at a
much steeper angle, and, for the same reason, the
arch thrust is greater in dryer sand and therefore
the load on a tunnel structure should not be as great,
the material being compact and excluding cohesion
as a factor. This can be illustrated by referring
to Fig. 3 in which it is seen that the flatter the
position of the “rakers” keying at
W{1}_,
W{2}_, and
W, the greater will be the
side thrust at
A,
C, and
F.
It can also be illustrated by assuming that the arching
material is composed of cubes of polished marble set
one vertically above the other in close columns.
There would then be absolutely no side thrust, but,
likewise, no arching properties would be developed,
and an indefinite height would probably be reached
above the tunnel roof before friction enough would
be developed to cause it to relieve the structure
of any part of its load. Conversely, if it be
assumed that the superadjacent material is composed
of large bowling balls, interlocking with some degree
of regularity, it can be seen that those above will
form themselves into an arch over the “centering”
made up of those supported directly by the roof of
the structure, thus relieving the structure of any
load except that due to this “centering.”
If, now, the line, A B, in Fig. 4, be drawn
so as to form with A C the angle, [beta], to
be noted later, and it be assumed that it measures
the area of pressure against A C, and if the
line, C F, be drawn, forming with C G,
the angle, [alpha], noted above, then G F can
be reduced in some measure by reason of the increase
of G C to C B, because the side thrust
above the line, B C, has slightly diminished
the loading above. The writer makes the arbitrary
assumption that this decrease in G F should
equal 20% of B C = F D{1}_. If,
then, the line, B D{1}_ be drawn, it is conceded
that all the material within the area, A B D{1}
G C A_, causes direct pressure against or upon the
structure, G C A, the vertical lines being the
ordinates of pressure due to weight, and the horizontal
lines (qualified by certain ratios) being the abscissas
of pressure due to thrust. An extreme measurement
of this area of pressure is doubtless approximately
more nearly a curve than the straight lines given,
and the curve, A R T I D{II}_, is therefore
drawn in to give graphically and approximately the
safe area of which any vertical ordinate, multiplied
by the weight, gives the pressure on the roof at that
point, and any horizontal line, or abscissa, divided
by the tangent of the angle of repose and multiplied
by the weight per foot, gives the pressure on the side
at that point.
[Illustration: FIG. 4.]