Just here the writer desires to protest against considering semi-aqueous masses, such as soupy sands, soft concrete, etc., as exerting hydrostatic pressure due to their weight in bulk, instead of to the specific gravity of the basic liquid. For instance, resorting again to the illustration of cubes and spheres, it may be assumed that a cubical receptacle has been partly filled with small cubes of polished marble, piled vertically in columns. When this receptacle is filled with liquid around the piles of cubes there will be no pressure on the sides except that due to the hydrostatic pressure of the water at 621/2 lb. The bottom, however, will resist a combined pressure due to the water and the weight of the cubes. Again, assume that the receptacle is filled with small spheres, such as marbles, and that water is then poured in. The pressure due to the weight of the solids on the bottom is relieved by the loss in weight of the marbles due to the water, and also to the tendency of the marbles to arch over the bottom, and while the pressure on the sides is increased by this amount of thrust, the aqueous pressure is still that of a liquid at 621/2 lb., and it is inconceivable that some engineers, in calculating the thrust of aqueous masses, speak of it as a liquid weighing, say, 120 or 150 lb. per cu. ft.; as well might they expect to anchor spherical copper floats in front of a bulkhead and expect the hydrostatic pressure against this bulkhead to be diminished because the actual volume and weight of the water directly in front of the bulkhead has been diminished. Those who have had experience in tying narrow deep forms for concrete with small wires or bolts and quickly filling them with liquid concrete, must realize that no such pressures are ever developed as would correspond to liquids of 150 lb. per cu. ft. If the solid material in any liquid is agitated, so that it is virtually in suspension, it cannot add to the pressure, and if allowed to subside it acts as a solid, independently of the water contained with it, although the water may change somewhat the properties of the material, by increasing or changing its cohesion, angle of repose, etc. That is, in substance, those particles which rest solidly on the bottom and are in contact to the top of the solid material, do not derive any buoyancy from the water, while those particles not in contact with the bottom directly or through other particles, lose just so much weight through buoyancy. If, then, the vertical depth of the earthy particles or sand above the bottom is so small that the arching effect against the sides is negligible, the full weight of the particles in contact, directly or vicariously, with the bottom acts as pressure on the bottom, while the full pressure of the water acts through the voids or on them, or is transmitted through material in contact with the bottom.
Referring now to materials such as clays, peats, and other soft or plastic materials, it is idle to assume that these do not possess pressure-resisting and arching properties. For instance, a soft clay arch of larger dimensions, under the condition described early in this paper, would undoubtedly stand if the rods supporting the intrados of the arch were keyed back to washers covering a sufficiently large area.