As a matter of fact it was comparatively late in his life as a teacher that Huxley had complete opportunity for putting into practice his scheme for the laboratory teaching of biology. In 1854 there was no laboratory attached to the Natural History Department of the School of Mines. Lectures alone were given, and the only opportunity the student had of any practical acquaintance with the facts was in a short interview with the professor at the lecture table after the lecture. This condition continued practically to 1872. But a few years before that Huxley and his colleagues got up a kind of pronunciamento deploring the existing state of affairs. In his evidence before the Royal Commission of 1870 Huxley said: “There is a complete want in the School of Mines, as it now exists, of any means of teaching several of the subjects practically. For example, I am set there to teach natural history without a biological laboratory and without the means of shewing a single dissection.” Against strong internal opposition and at considerable pecuniary loss Huxley and some of his colleagues succeeded, in 1872, in getting the School of Mines transferred to South Kensington, where it became the Royal College of Science. For the first course of instruction given in the new buildings, Huxley obtained the aid of Prof. M. Foster, Prof. Rutherford, and Prof. Ray Lankester. The laboratory course originated by Huxley and shaped by him with these three distinguished assistants became the model of the regular courses given subsequently, and, with various slight modifications, has since been adopted almost universally. Later on, Huxley described it as follows:
“I lecture to a class of students daily for about four months and a half, and my class have, of course, their text-books; but the essential part of the whole teaching, and that which I regard as really the most important part of it, is a laboratory for practical work, which is simply a room with all the appliances needed for ordinary dissection. We have tables properly arranged in regard to light, microscopes and dissecting instruments, and we work through the structure of a certain number of plants and animals. As, for example, among the plants we take the yeast-plant, a Protococcus, a common mould, a Chara, a fern, and some flowering plant; among animals we examine such things as an Amoeba, a Vorticella, and a fresh-water polyp. We dissect a starfish, an earthworm, a snail, a squid, and a fresh-water mussel. We examine a lobster and a crayfish, and a black beetle. We go on to a common skate, a codfish, a frog, a tortoise, a pigeon, and a rabbit, and that takes us about all the time we have to give. The purpose of this course is not to make skilled dissectors, but to give every student a clear and definite conception, by means of sense images, of the characteristic structure of each of the leading modifications of the animal kingdom; and that is perfectly possible by going