No person was more sagacious than Laplace in discovering intimate relations between phenomena apparently very dissimilar; no person showed himself more skilful in deducing important conclusions from those unexpected affinities.
Towards the close of his days, for example, he overthrew with a stroke of the pen, by the aid of certain observations of the moon, the cosmogonic theories of Buffon and Bailly, which were so long in favour.
According to these theories, the earth was inevitably advancing to a state of congelation which was close at hand. Laplace, who never contented himself with a vague statement, sought to determine in numbers the rapid cooling of our globe which Buffon had so eloquently but so gratuitously announced. Nothing could be more simple, better connected, or more demonstrative, than the chain of deductions of the celebrated geometer.
A body diminishes in volume when it cools. According to the most elementary principles of mechanics, a rotating body which contracts in dimensions ought inevitably to turn upon its axis with greater and greater rapidity. The length of the day has been determined in all ages by the time of the earth’s rotation; if the earth is cooling, the length of the day must be continually shortening. Now there exists a means of ascertaining whether the length of the day has undergone any variation; this consists in examining, for each century, the arc of the celestial sphere described by the moon during the interval of time which the astronomers of the existing epoch called a day,—in other words, the time required by the earth to effect a complete rotation on its axis, the velocity of the moon being in fact independent of the time of the earth’s rotation.
Let us now, after the example of Laplace, take from the standard tables the least considerable values, if you choose, of the expansions or contractions which solid bodies experience from changes of temperature; search then the annals of Grecian, Arabian, and modern astronomy for the purpose of finding in them the angular velocity of the moon, and the great geometer will prove, by incontrovertible evidence founded upon these data, that during a period of two thousand years the mean temperature of the earth has not varied to the extent of the hundredth part of a degree of the centigrade thermometer. No eloquent declamation is capable of resisting such a process of reasoning, or withstanding the force of such numbers. The mathematics have been in all ages the implacable adversaries of scientific romances.
The fall of bodies, if it was not a phenomenon of perpetual occurrence, would justly excite in the highest degree the astonishment of mankind. What, in effect, is more extraordinary than to see an inert mass, that is to say, a mass deprived of will, a mass which ought not to have any propensity to advance in one direction more than in another, precipitate itself towards the earth as soon as it ceased to be supported!