To investigate a physical cause capable of making the planets revolve in closed curves; to place the principle of the stability of the universe in mechanical forces and not in solid supports such as the spheres of crystal which our ancestors had dreamed of; to extend to the revolutions of the heavenly bodies the general principles of the mechanics of terrestrial bodies,—such were the questions which remained to be solved after Kepler had announced his discoveries to the world.
Very distinct traces of these great problems are perceived here and there among the ancients as well as the moderns, from Lucretius and Plutarch down to Kepler, Bouillaud, and Borelli. It is to Newton, however, that we must award the merit of their solution. This great man, like several of his predecessors, conceived the celestial bodies to have a tendency to approach towards each other in virtue of an attractive force, deduced the mathematical characteristics of this force from the laws of Kepler, extended it to all the material molecules of the solar system, and developed his brilliant discovery in a work which, even in the present day, is regarded as the most eminent production of the human intellect.
The heart aches when, upon studying the history of the sciences, we perceive so magnificent an intellectual movement effected without the cooeperation of France. Practical astronomy increased our inferiority. The means of investigation were at first inconsiderately entrusted to foreigners, to the prejudice of Frenchmen abounding in intelligence and zeal. Subsequently, intellects of a superior order struggled with courage, but in vain, against the unskilfulness of our artists. During this period, Bradley, more fortunate on the other side of the Channel, immortalized himself by the discovery of aberration and nutation.
The contribution of France to these admirable revolutions in astronomical science, consisted, in 1740, of the experimental determination of the spheroidal figure of the earth, and of the discovery of the variation of gravity upon the surface of our planet. These were two great results; our country, however, had a right to demand more: when France is not in the first rank she has lost her place.[24]
This rank, which was lost for a moment, was brilliantly regained, an achievement for which we are indebted to four geometers.
When Newton, giving to his discoveries a generality which the laws of Kepler did not imply, imagined that the different planets were not only attracted by the sun, but that they also attract each other, he introduced into the heavens a cause of universal disturbance. Astronomers could then see at the first glance that in no part of the universe whether near or distant would the Keplerian laws suffice for the exact representation of the phenomena; that the simple, regular movements with which the imaginations of the ancients were pleased to endue the heavenly bodies would experience numerous, considerable, perpetually changing perturbations.