Scientific American Supplement, No. 443, June 28, 1884 eBook

This eBook from the Gutenberg Project consists of approximately 97 pages of information about Scientific American Supplement, No. 443, June 28, 1884.

Scientific American Supplement, No. 443, June 28, 1884 eBook

This eBook from the Gutenberg Project consists of approximately 97 pages of information about Scientific American Supplement, No. 443, June 28, 1884.

Two methods were used in the quantitative estimation of the amount of phenol.  The first was the new volumetric method of M. Chandelon (Bulletin de la Societe Chemique de Paris, July 20, 1882; and Deutsch-Americanishe Apotheker Zeitung, vol. iii., No. 12, September 1, 1882), which I have found to be very satisfactory.  The process depends on the precipitation of phenol by a dilute aqueous solution of bromine as tribromophenol.  The second method was to extract, as already staled, a known weight of each part of the plant with water, until the last extract gives no violet color with ferric chloride, and no white precipitate with the bromine test (which is capable of detecting in a solution the 1/60000 part of phenol).  The aqueous extract is at this point evaporated, then ether is added, and finally the ethereal solution is allowed to evaporate.  The residue (phenol) is weighed directly, and from this the percentage can be ascertained.  By this method of extraction, the oil of turpentine, resins, etc., contained in Pinus sylvestris do not pass into solution, because they are insoluble in water, even when boiling; what passes into solution besides phenol is a little tannin, which is practically insoluble in ether.

From this investigation it will be seen that phenol exists in various proportions in the free state in the leaves, stem, and cones of Pinus sylvestris, and as this compound is a product in the distillation of coal, and as geologists have to a certain extent direct evidence that the flora of the Carboniferous epoch was essentially crytogamous, the only phaenogamous plants which constituted any feature in “the coal forests” being the coniferae, and as coal is the fossil remains of that gigantic flora which contained phenol, I think my discovery of phenol in the coniferae of the present day further supports, from a chemical point of view, the views of geologists that the coniferae existed so far back in the world’s history as the Carboniferous age.

I think this discovery also supports the theory that the origin of petroleum in nature is produced by moderate heat on coal or similar matter of a vegetable origin.  For we know from the researches of Freund and Pebal (Ann.  Chem.  Pharm., cxv. 19), that petroleum contains phenol and its homologues, and as I have found this organic compound in the coniferae of to-day, it is probable that petroleum in certain areas has been produced from the conifers and the flora generally of some primaeval forests.  It is stated by numerous chemists that “petroleum almost always contains solid paraffin” and similar hydrocarbons.  Professors Schorlemmer and Thorpe have found heptane in Pinus, which heptane yielded primary heptyl-alcohol, and methyl-pentyl-carbinol, exactly as the heptane obtained from petroleum does (Annalen de Chemie, ccxvii., 139, and clxxxviii., 249; and Berichte der Deutschen Chemischen Gesellschaft, viii., 1649); and, further, petroleum contains a large number of hydrocarbons which are found in coal.  Again, Mendelejeff, Beilstein, and others (Bulletin de la Societe Chemique de Paris, No. 1, July 5, 1883), have found hydrocarbons of the—­

Copyrights
Project Gutenberg
Scientific American Supplement, No. 443, June 28, 1884 from Project Gutenberg. Public domain.