Amusements in Mathematics eBook

Henry Dudeney
This eBook from the Gutenberg Project consists of approximately 597 pages of information about Amusements in Mathematics.

Amusements in Mathematics eBook

Henry Dudeney
This eBook from the Gutenberg Project consists of approximately 597 pages of information about Amusements in Mathematics.

Puzzles have infinite variety, but perhaps there is no class more ancient than dissection, cutting-out, or superposition puzzles.  They were certainly known to the Chinese several thousand years before the Christian era.  And they are just as fascinating to-day as they can have been at any period of their history.  It is supposed by those who have investigated the matter that the ancient Chinese philosophers used these puzzles as a sort of kindergarten method of imparting the principles of geometry.  Whether this was so or not, it is certain that all good dissection puzzles (for the nursery type of jig-saw puzzle, which merely consists in cutting up a picture into pieces to be put together again, is not worthy of serious consideration) are really based on geometrical laws.  This statement need not, however, frighten off the novice, for it means little more than this, that geometry will give us the “reason why,” if we are interested in knowing it, though the solutions may often be discovered by any intelligent person after the exercise of patience, ingenuity, and common sagacity.

If we want to cut one plane figure into parts that by readjustment will form another figure, the first thing is to find a way of doing it at all, and then to discover how to do it in the fewest possible pieces.  Often a dissection problem is quite easy apart from this limitation of pieces.  At the time of the publication in the Weekly Dispatch, in 1902, of a method of cutting an equilateral triangle into four parts that will form a square (see No. 26, “Canterbury Puzzles"), no geometrician would have had any difficulty in doing what is required in five pieces:  the whole point of the discovery lay in performing the little feat in four pieces only.

Mere approximations in the case of these problems are valueless; the solution must be geometrically exact, or it is not a solution at all.  Fallacies are cropping up now and again, and I shall have occasion to refer to one or two of these.  They are interesting merely as fallacies.  But I want to say something on two little points that are always arising in cutting-out puzzles—­the questions of “hanging by a thread” and “turning over.”  These points can best be illustrated by a puzzle that is frequently to be found in the old books, but invariably with a false solution.  The puzzle is to cut the figure shown in Fig. 1 into three pieces that will fit together and form a half-square triangle.  The answer that is invariably given is that shown in Figs. 1 and 2.  Now, it is claimed that the four pieces marked C are really only one piece, because they may be so cut that they are left “hanging together by a mere thread.”  But no serious puzzle lover will ever admit this.  If the cut is made so as to leave the four pieces joined in one, then it cannot result in a perfectly exact solution.  If, on the other hand, the solution is to be exact, then there will be four pieces—­or six pieces in all.  It is, therefore, not a solution in three pieces.

Copyrights
Project Gutenberg
Amusements in Mathematics from Project Gutenberg. Public domain.