421.—A CHAIN PUZZLE.
To open and rejoin a link costs threepence. Therefore to join the nine pieces into an endless chain would cost 2s. 3d., whereas a new chain would cost 2s. 2d. But if we break up the piece of eight links, these eight will join together the remaining eight pieces at a cost of 2s. But there is a subtle way of even improving on this. Break up the two pieces containing three and four links respectively, and these seven will join together the remaining seven pieces at a cost of only 1s. 9d.
422.—THE SABBATH PUZZLE.
The way the author of the old poser proposed to solve the difficulty was as follows: From the Jew’s abode let the Christian and the Turk set out on a tour round the globe, the Christian going due east and the Turk due west. Readers of Edgar Allan Poe’s story, Three Sundays in a Week, or of Jules Verne’s Round the World in Eighty Days, will know that such a proceeding will result in the Christian’s gaining a day and in the Turk’s losing a day, so that when they meet again at the house of the Jew their reckoning will agree with his, and all three may keep their Sabbath on the same day. The correctness of this answer, of course, depends on the popular notion as to the definition of a day—the average duration between successive sun-rises. It is an old quibble, and quite sound enough for puzzle purposes. Strictly speaking, the two travellers ought to change their reckonings on passing the 180th meridian; otherwise we have to admit that at the North or South Pole there would only be one Sabbath in seven years.
423.—THE RUBY BROOCH.
In this case we were shown a sketch of the brooch exactly as it appeared after the four rubies had been stolen from it. The reader was asked to show the positions from which the stones “may have been taken;” for it is not possible to show precisely how the gems were originally placed, because there are many such ways. But an important point was the statement by Lady Littlewood’s brother: “I know the brooch well. It originally contained forty-five stones, and there are now only forty-one. Somebody has stolen four rubies, and then reset as small a number as possible in such a way that there shall always be eight stones in any of the directions you have mentioned.”
[Illustration]
The diagram shows the arrangement before the robbery. It will be seen that it was only necessary to reset one ruby—the one in the centre. Any solution involving the resetting of more than one stone is not in accordance with the brother’s statement, and must therefore be wrong. The original arrangement was, of course, a little unsymmetrical, and for this reason the brooch was described as “rather eccentric.”
424.—THE DOVETAILED BLOCK.
[Illustration]
The mystery is made clear by the illustration. It will be seen at once how the two pieces slide together in a diagonal direction.