Amusements in Mathematics eBook

Henry Dudeney
This eBook from the Gutenberg Project consists of approximately 597 pages of information about Amusements in Mathematics.

Amusements in Mathematics eBook

Henry Dudeney
This eBook from the Gutenberg Project consists of approximately 597 pages of information about Amusements in Mathematics.

But, as I have said, these are not the answers in the smallest numbers:  for if we add 523 to the numbers 1 to 16, we get sixteen consecutive composites; and if we add 1,327 to the numbers 1 to 25, we get twenty-five consecutive composites, in each case the smallest numbers possible.  Yet if we required to form a magic square of a hundred such numbers, we should find it a big task by means of tables, though by the process I have shown it is quite a simple matter.  Even to find thirty-six such numbers you will search the tables up to 10,000 without success, and the difficulty increases in an accelerating ratio with each square of a larger order.

412.—­THE MAGIC KNIGHT’S TOUR.

+——­+——­+——­+——­+——­+——­+——­+——­+
| 46 | 55 | 44 | 19 | 58 |  9 | 22 |  7 |
+——­+——­+——­+——­+——­+——­+——­+——­+
| 43 | 18 | 47 | 56 | 21 |  6 | 59 | 10 |
+——­+——­+——­+——­+——­+——­+——­+——­+
| 54 | 45 | 20 | 41 | 12 | 57 |  8 | 23 |
+——­+——­+——­+——­+——­+——­+——­+——­+
| 17 | 42 | 53 | 48 |  5 | 24 | 11 | 60 |
+——­+——­+——­+——­+——­+——­+——­+——­+
| 52 |  3 | 32 | 13 | 40 | 61 | 34 | 25 |
+——­+——­+——­+——­+——­+——­+——­+——­+
| 31 | 16 | 49 |  4 | 33 | 28 | 37 | 62 |
+——­+——­+——­+——­+——­+——­+——­+——­+
|  2 | 51 | 14 | 29 | 64 | 39 | 26 | 35 |
+——­+——­+——­+——­+——­+——­+——­+——­+
| 15 | 30 |  1 | 50 | 27 | 36 | 63 | 38 |
+——­+——­+——­+——­+——­+——­+——­+——­+

Here each successive number (in numerical order) is a knight’s move from the preceding number, and as 64 is a knight’s move from 1, the tour is “re-entrant.”  All the columns and rows add up 260.  Unfortunately, it is not a perfect magic square, because the diagonals are incorrect, one adding up 264 and the other 256—­requiring only the transfer of 4 from one diagonal to the other.  I think this is the best result that has ever been obtained (either re-entrant or not), and nobody can yet say whether a perfect solution is possible or impossible.

413.—­A CHESSBOARD FALLACY.

[Illustration]

The explanation of this little fallacy is as follows.  The error lies in assuming that the little triangular piece, marked C, is exactly the same height as one of the little squares of the board.  As a matter of fact, its height (if we make the sixty-four squares each a square inch) will be 1+1/7 in.  Consequently the rectangle is really 9+1/7 in. by 7 in., so that the area is sixty-four square inches in either case.  Now, although the pieces do fit together exactly to form the perfect rectangle, yet the directions of the horizontal lines in the pieces will not coincide.  The new diagram above will make everything quite clear to the reader.

414.—­WHO WAS FIRST?

Biggs, who saw the smoke, would be first; Carpenter, who saw the bullet strike the water, would be second; and Anderson, who heard the report, would be last of all.

415.—­A WONDERFUL VILLAGE.

When the sun is in the horizon of any place (whether in Japan or elsewhere), he is the length of half the earth’s diameter more distant from that place than in his meridian at noon.  As the earth’s semi-diameter is nearly 4,000 miles, the sun must be considerably more than 3,000 miles nearer at noon than at his rising, there being no valley even the hundredth part of 1,000 miles deep.

Copyrights
Project Gutenberg
Amusements in Mathematics from Project Gutenberg. Public domain.