5 kaviri (bunches of cocoanuts) = 1 takau = 20. 10 takau = 1 rau = 200. 10 rau = 1 mano = 2000. 10 mano = 1 kiu = 20,000. 10 kiu = 1 tini = 200,000.
Anything above this they speak of in an uncertain way, as mano mano or tini tini, which may, perhaps, be paralleled by our English phrases “myriads upon myriads,” and “millions of millions."[205] It is most remarkable that the same quarter of the globe should present us with the stunted number sense of the Australians, and, side by side with it, so extended and intelligent an appreciation of numerical values as that possessed by many of the lesser tribes of Polynesia.
The Luli of Paraguay[206] show a decided preference for the base 4. This preference gives way only when they reach the number 10, which is an ordinary digit numeral. All numbers above that point belong rather to decimal than to quaternary numeration. Their numerals are:
1. alapea.
2. tamop.
3. tamlip.
4. lokep.
5. lokep moile alapea = 4 with
1,
or
is-alapea = hand 1.
6. lokep moile tamop = 4 with
2.
7. lokep moile tamlip = 4 with
3.
8. lokep moile lokep = 4 with
4.
9. lokep moile lokep alapea = 4
with 4-1.
10. is yaoum = all the fingers of hand.
11. is yaoum moile alapea = all the fingers
of hand with 1.
20. is elu yaoum = all the fingers of
hand and foot.
30. is elu yaoum moile is-yaoum = all
the fingers of hand and foot with
all
the fingers of hand.
Still another instance of quaternary counting, this time carrying with it a suggestion of binary influence, is furnished by the Mocobi[207] of the Parana region. Their scale is exceedingly rude, and they use the fingers and toes almost exclusively in counting; only using their spoken numerals when, for any reason, they wish to dispense with the aid of their hands and feet. Their first eight numerals are:
1. iniateda.
2. inabaca.
3. inabacao caini = 2 above.
4. inabacao cainiba = 2 above 2;
or natolatata.
5. inibacao cainiba iniateda = 2 above 2-1;
or natolatata iniateda = 4-1.
6. natolatatata inibaca = 4-2.
7. natolata inibacao-caini = 4-2 above.
8. natolata-natolata = 4-4.
There is probably no recorded instance of a number system formed on 6, 7, 8, or 9 as a base. No natural reason exists for the choice of any of these numbers for such a purpose; and it is hardly conceivable that any race should proceed beyond the unintelligent binary or quaternary stage, and then begin the formation of a scale for counting with any other base than one of the three natural bases to which allusion has already been made. Now and then some anomalous fragment is found imbedded in an otherwise regular system,