It is not possible in the present brief outline to describe all the results of recent investigations, but some of them are too important to be passed over. Perhaps the most interesting one is that the laws of heredity seem to be the same for man and other kinds of living creatures, as proved by Galton and Pearson and many others who have dealt with such characters as human stature, human eye color, and an extensive series of the peculiarities of lower animals and even of plants.
The researches dealing with the physical basis of inheritance and its location in the organism have yielded the most striking and brilliant results. Darwin himself realized that the doctrine of natural selection was incomplete, as it accepted at its face value the inheritance of congenital racial qualities without attempting to describe the way an egg or any other germ bears them, and he endeavored to round out his doctrine of selection by adding the theory of pangenesis. According to this, every cell of every tissue and organ of the body produces minute particles called gemmules, which partake of the characters of the cells that produce them. The gemmules were supposed to be transported throughout the entire body, and to congregate in the germ-cells, which in a sense would be minute editions of the body which bears them, and would then be capable of producing the same kind of a body. If true, this view would lead to the acceptance of Lamarck’s or even Buffon’s doctrine, for changes induced in any organ by other than congenital factors could be impressed upon the germ-cell, and would then be transported together with the original specific characters to future generations. Darwin was indeed a good Lamarckian.
But the researches of post-Darwinians, and especially those of the students of cellular phenomena, have demonstrated that such a view has no real basis in fact. Many naturalists, like Naegeli and Wiesner, were convinced that there was a specific substance concerned with hereditary qualities as in a larger way protoplasm is the physical basis of life. It remained for Weismann to identify this theoretical substance with a specific part of the cell, namely, the deeply staining substance, or chromatin, contained in the nucleus of every cell. Bringing together the accumulating observations of the numerous cytologists of his time, and utilizing them for the development of his somewhat speculative theories, Weismann published in 1882 a volume called “The Germ Plasm,” which is an immortal foundation for all later work on inheritance. The essential principles of the germ-plasm theory are somewhat as follows. The chromatin of the nucleus contains the determinants of hereditary qualities. In reproduction, the male sex-cell, which is scarcely more than a minute mass of chromatin provided with a thin coat of protoplasm and a motile organ, fuses with the egg, and the nuclei of the two cells unite to form a double body, which contains equal contributions of chromatin from the