The best authenticated composition for melenite consists of picric acid, gun cotton and gum arabic, and lately it is stated that the French have added cresilite to it. Cresilite is another product of coal tar. Melenite is normally only three times as strong as gunpowder; but it is said to owe its destructive qualities in shells to the powerful character of the exploder which ignites it. It has been known for some years that all explosives (including gunpowder) are capable of two orders of explosion according as they are merely ignited or excited by a weak fuse or as they are powerfully shocked by a more vigorous excitant. Fulminate of mercury has been found most serviceable for the latter purpose. With melenite the French have reproduced all the results that the Germans have effected with gun-cotton and have found that a shell containing 119 pounds of it will penetrate nearly ten feet of solid cement, but will not penetrate armored turrets six to eight inches thick. The French claim that melenite has an advantage over gun-cotton in not being so dangerous to handle and being insensible to shock or friction, and they have obtained a velocity of 1,300 f.s. with the 88 inch mortar and claim to have obtained 2,000 f.s. in long guns up to 62 inch caliber. However this may be, they are known to have had severe accidents at the manufactory at Belfort and at least one 56 inch gun was burst at the Bellequense experiments in firing a sixty-six pound shell containing twenty-eight pounds of melenite. The French are said to have large quantities of melenite shells in store, but they are not issued to service.
Probably one reason why we have so many conflicting yet positive accounts of great successes in Europe with torpedo shells is because each nation wishes its neighbors to think that it is prepared for all eventualities, and they are obliged to keep on hand large quantities of some explosive, whether they have confidence in it or not. Fortunately we are not so situated, but singularly enough what we have done in the field of high explosive projection has been accomplished by private enterprise, and we have attacked the problem at exactly the opposite point from which European nations have undertaken it. While they have assumed that the powder gun with its powerful and relatively irregular pressures was a necessity and have endeavored to modify the explosive to suit it, we have taken the explosive as we have found it, and have adapted the gun to the explosive. At present the prominent weapon in this new field is the pneumatic gun, but it is obvious that steam, carbonic acid gas, ammonia or any other moderate and regulatable pressure can be used as well as compressed air; it is merely a question of mechanical convenience.