No. of F’s. in First Year 1 2 3 4 5 6 7+
Per Cent of Groups Having
No Failures Later 18.4 13.7 7.2
9.4 10.5 5.0 12.9
About the same percentage of the boys and of the girls (near 60 per cent) is represented in Table VII. The girls have an advantage over the boys of about 8 per cent for those belonging to the group with no failures, and of about 1 per cent for the group with seven or more failures.
No unconditional conclusion seems justified by this table. In the first year’s record of failures there are good grounds for the promise of later performance. We may safely say that those who do not fail the first year are much less likely to fail later, and that if they do fail later, they have less accumulation of failures. Yet some of this group have many failures after the first year, and others who have several failures the first year have none subsequently. Generally, however, the later accumulations are in almost direct ratio to the earlier record, and the later non-failures are in inverse ratio to the debits of the first year.
5. THE PROGNOSIS OF FAILURES BY THE SUBJECT SELECTION
From the distribution of failures by school subjects as presented in Chapter II, this will seem to be the easiest and almost the surest of all the factors thus far considered to employ for a prognosis of failure. For of all pupils taking Latin we may confidently expect an average of a little less than one pupil in every five to fail each semester. For the entire number taking mathematics, the expectation of failure is an average of about one in six for each semester. German comes next, and for each semester it claims for failure on the average nearly one pupil in every seven taking it. Similarly French claims for failure one in every nine; history, one in every ten; English and business subjects, less than one in every twelve. It will be noted that the average on a semester basis is employed in this part of the computation. Consequently, it is not the same as saying that such a percentage of pupils fail at some time, in the subject. The pupil who fails four times in first year mathematics is intentionally regarded here as representing four failures. Likewise, the pupil who completes four years of Latin without failure represents eight successes for the subject in calculating these percentages. Every recorded failure for each pupil is thus accounted for.
It was also noted in Chapter II that the percentages of the total failures run higher in mathematics, Latin, history, and science, for the graduates than for the non-graduates. This fact is not due to the greater number of failures of graduates in the earlier semesters, when most of the non-graduate failures occur, but to the increase of failures for the graduates in the later years, as is disclosed in Tables II and IV. Accordingly, we may say that those two subjects which are most productive of school failures are increasingly