The Great Comet of 1843 passed nearer the sun than any known body. It almost grazed the sun. If it ever returns, it will be in A.D. 2373.
Donati’s Comet of 1858.—This was one of the most magnificent of modern times. During the first three months it showed no tail, but from August to October it had developed one forty degrees in length. Its period is about two thousand years. Every reader remembers the comet of the summer of 1875.
Encke’s Comet.—This comet has become famous for its supposed confirmation of the theory that space was filled with a substance infinitely tenuous, which resisted the passage of this gaseous body in an appreciable degree, and in long ages would so retard the motion of all the planets that gravitation would draw them all one by one into the sun. We must not be misled by the term retardation to suppose it means behind time, for a retarded body is before time. If its velocity is diminished, the attraction of the sun causes it to take a smaller orbit, and smaller orbits mean increased speed—hence the supposed retardation would shorten its periodic time. This comet was thought to be retarded two and a half hours at each revolution. If it was, it would not prove the existence of the resisting medium. Other causes, unknown to us, might account for it. Subsequent and more exact calculations fail to find any retardations in at least two revolutions between 1865 and [Page 131] 1871. Indications point to a retardation of one and a half hours both before and since. But such discrepancy of result proves nothing concerning a resisting medium, but rather is an argument against its existence. Besides, Faye’s comet, in four revolutions of seven years each, shows no sign of retardation.
The truth may be this, that a kind of atmosphere exists around the sun, perhaps revealed by the zodiacal light, that reaches beyond where Encke’s comet dips inside the orbit of Mercury, and thus retards this body, but does not reach beyond the orbit of Mars, where Faye’s comet wheels and withdraws.
Of what do Comets consist?
The unsolved problems pertaining to comets are very numerous and exceedingly delicate. Whence come they? Why did they not contract to centres of nebulae? Are there regions where attractions are balanced, and matter is left to contract on itself, till the movements of suns and planets adds or diminishes attractive force on one side, and so allows them to be drawn slowly toward one planet, and its sun, or another? There is ground for thinking that the comet of 1866 and its train of meteors, visible to us in November, was thus drawn into our system by the planet Uranus. Indeed, Leverrier has conjecturally fixed upon the date of A.D. 128 as the time when it occurred; but another and closer observation of its next return, in 1899, will be needed to give confirmation to the opinion. Our sun’s authority extends at least half-way to the nearest fixed star, one hundred thousand times farther than the orbit of the earth. Meteoric and cometary matter lying [Page 132] there, in a spherical shell about the solar system, balanced between the attraction of different suns, finally feels the power that determines its destiny toward our sun. It would take 167,000,000 years to come thence to our system.