Cyclopedia of Telephony & Telegraphy Vol. 1 eBook

This eBook from the Gutenberg Project consists of approximately 436 pages of information about Cyclopedia of Telephony & Telegraphy Vol. 1.

Cyclopedia of Telephony & Telegraphy Vol. 1 eBook

This eBook from the Gutenberg Project consists of approximately 436 pages of information about Cyclopedia of Telephony & Telegraphy Vol. 1.

The temperature coefficient of a conductor is a factor by which the resistance of the conductor at a given temperature must be multiplied in order to determine the change in resistance of that conductor brought about by a rise in temperature of one degree.

TABLE V

Temperature Coefficients

+---------------------------+--------------------------
---+ | PURE METALS | TEMPERATURE COEFFICIENTS | +---------------------------+--------------+--------------+ | | CENTIGRADE | FAHRENHEIT | +---------------------------+--------------+--------------+ | Silver (annealed) | 0.00400 | 0.00222 | | Copper (annealed) | 0.00428 | 0.00242 | | Gold (99.9%) | 0.00377 | 0.00210 | | Aluminum (99%) | 0.00423 | 0.00235 | | Zinc | 0.00406 | 0.00226 | | Platinum (annealed) | 0.00247 | 0.00137 | | Iron | 0.00625 | 0.00347 | | Nickel | 0.0062 | 0.00345 | | Tin | 0.00440 | 0.00245 | | Lead | 0.00411 | 0.00228 | | Antimony | 0.00389 | 0.00216 | | Mercury | 0.00072 | 0.00044 | | Bismuth | 0.00354 | 0.00197 | +---------------------------+--------------+--------------+<
/pre>

Positive and Negative Coefficients. Those conductors, in which a rise in temperature produces an increase in resistance, are said to have positive temperature coefficients, while those in which a rise in temperature produces a lowering of resistance are said to have negative temperature coefficients.

The temperature coefficients of pure metals are always positive and for some of the more familiar metals, have values, according to Foster, as in Table V.

Iron, it will be noticed, has the highest temperature coefficient of all.  Carbon, on the other hand, has a large negative coefficient, as proved by the fact that the filament of an ordinary incandescent lamp has nearly twice the resistance when cold as when heated to full candle-power.

Certain alloys have been produced which have very low temperature coefficients, and these are of value in producing resistance units which have practically the same resistance for all ordinary temperatures.  Some of these alloys also have very high resistance as compared with copper and are of value in enabling one to obtain a high resistance in small space.

One of the most valuable resistance wires is of an alloy known as German silver.  The so-called eighteen per cent alloy has approximately 18.3 times the resistance of copper and a temperature coefficient of .00016 per degree Fahrenheit.  The thirty per cent alloy has approximately 28 times the resistance of copper and a temperature coefficient of .00024 per degree Fahrenheit.

Copyrights
Project Gutenberg
Cyclopedia of Telephony & Telegraphy Vol. 1 from Project Gutenberg. Public domain.