Micrographia eBook

This eBook from the Gutenberg Project consists of approximately 539 pages of information about Micrographia.

Micrographia eBook

This eBook from the Gutenberg Project consists of approximately 539 pages of information about Micrographia.
to the Earth again to be full two Minutes in performing, I know not any possible means to discover it; nay, there may be some instances perhaps of Horizontal Eclypses that may seem very much to favour this supposition of the slower progression of Light then most imagine.  And the like may be said of the Eclypses of the Sun, &c.  But of this only by the by.  Fourthly, That the motion is propagated every way through an Homogeneous medium by direct or straight lines extended every way like Rays from the center of a Sphere.  Fifthly, in an Homogeneous medium this motion is propagated every way with equal velocity, whence necessarily every pulse or vitration of the luminous body will generate a Sphere, which will continually increase, and grow bigger, just after the same manner (though indefinitely swifter) as the waves or rings on the surface of the water do swell into bigger and bigger circles about a point of it, where, by the sinking of a Stone the motion was begun, whence it necessarily follows, that all the parts of these Spheres undulated through an Homogeneous medium cut the Rays at right angles.

But because all transparent mediums are not Homogeneous to one another, therefore we will next examine how this pulse or motion will be propagated through differingly transparent mediums.  And here, according to the most acute and excellent Philosopher Des Cartes, I suppose the sign of the angle of inclination in the first medium to be to the sign of refraction in the second, As the density of the first, to the density of the second.  By density, I mean not the density in respect of gravity (with which the refractions or transparency of mediums hold no proportion) but in respect onely to the trajection of the Rays of light, in which respect they only differ in this; that the one propagates the pulse more easily and weakly, the other more slowly, but more strongly.  But as for the pulses themselves, they will by the refraction acquire another propriety, which we shall now endeavour to explicate.

We will suppose therefore in the first Figure ACFD to be a physical Ray, or ABC and DEF to be two Mathematical Rays, trajected from a very remote point of a luminous body through an Homogeneous transparent medium LLL, and DA, EB, FC, to be small portions of the orbicular impulses which must therefore cut the Rays at right angles; these Rays meeting with the plain surface NO of a medium that yields an easier transitus to the propagation of light, and falling obliquely on it, they will in the medium MMM be refracted towards the perpendicular of the surface.  And because this medium is more easily trajected then the former by a third, therefore the point C of the orbicular pulse FC will be mov’d to H four spaces in the same time that F the other end of it is mov’d to G three spaces, therefore the whole refracted pulse

Copyrights
Project Gutenberg
Micrographia from Project Gutenberg. Public domain.