The New Physics and Its Evolution eBook

This eBook from the Gutenberg Project consists of approximately 267 pages of information about The New Physics and Its Evolution.

The New Physics and Its Evolution eBook

This eBook from the Gutenberg Project consists of approximately 267 pages of information about The New Physics and Its Evolution.

Professor Ostwald and his pupils have drawn from the hypothesis of Arrhenius manifold consequences which have been the cause of considerable progress in physical chemistry.  Professor Ostwald has shown, in particular, how this hypothesis permits the quantitative calculation of the conditions of equilibrium of electrolytes and solutions, and especially of the phenomena of neutralization.  If a dissolved salt is partly dissociated into ions, this solution must be limited by an equilibrium between the non-dissociated molecule and the two ions resulting from the dissociation; and, assimilating the phenomenon to the case of gases, we may take for its study the laws of Gibbs and of Guldberg and Waage.  The results are generally very satisfactory, and new researches daily furnish new checks.

Professor Nernst, who before gave, as has been said, a remarkable interpretation of the diffusion of electrolytes, has, in the direction pointed out by M. Arrhenius, developed a theory of the entire phenomena of electrolysis, which, in particular, furnishes a striking explanation of the mechanism of the production of electromotive force in galvanic batteries.

Extending the analogy, already so happily invoked, between the phenomena met with in solutions and those produced in gases, Professor Nernst supposes that metals tend, as it were, to vaporize when in presence of a liquid.  A piece of zinc introduced, for example, into pure water gives birth to a few metallic ions.  These ions become positively charged, while the metal naturally takes an equal charge, but of contrary sign.  Thus the solution and the metal are both electrified; but this sort of vaporization is hindered by electrostatic attraction, and as the charges borne by the ions are considerable, an equilibrium will be established, although the number of ions which enter the solution will be very small.

If the liquid, instead of being a solvent like pure water, contains an electrolyte, it already contains metallic ions, the osmotic pressure of which will be opposite to that of the solution.  Three cases may then present themselves—­either there will be equilibrium, or the electrostatic attraction will oppose itself to the pressure of solution and the metal will be negatively charged, or, finally, the attraction will act in the same direction as the pressure, and the metal will become positively and the solution negatively charged.  Developing this idea, Professor Nernst calculates, by means of the action of the osmotic pressures, the variations of energy brought into play and the value of the differences of potential by the contact of the electrodes and electrolytes.  He deduces this from the electromotive force of a single battery cell which becomes thus connected with the values of the osmotic pressures, or, if you will, thanks to the relation discovered by Van t’ Hoff, with the concentrations.  Some particularly interesting electrical phenomena thus become connected with an already very important group, and a new bridge is built which unites two regions long considered foreign to each other.

Copyrights
Project Gutenberg
The New Physics and Its Evolution from Project Gutenberg. Public domain.