Certain occasional deformations which are produced and disappear slowly may be considered as intermediate between elastic and permanent deformations. Of these, the thermal deformation of glass which manifests itself by the displacement of the zero of a thermometer is an example. So also the modifications which the phenomena of magnetic hysteresis or the variations of resistivity have just demonstrated.
Many theorists have taken in hand these difficult questions. M. Brillouin endeavours to interpret these various phenomena by the molecular hypothesis. The attempt may seem bold, since these phenomena are, for the most part, essentially irreversible, and seem, consequently, not adaptable to mechanics. But M. Brillouin makes a point of showing that, under certain conditions, irreversible phenomena may be created between two material points, the actions of which depend solely on their distance; and he furnishes striking instances which appear to prove that a great number of irreversible physical and chemical phenomena may be ascribed to the existence of states of unstable equilibria.
M. Duhem has approached the problem from another side, and endeavours to bring it within the range of thermodynamics. Yet ordinary thermodynamics could not account for experimentally realizable states of equilibrium in the phenomena of viscosity and friction, since this science declares them to be impossible. M. Duhem, however, arrives at the idea that the establishment of the equations of thermodynamics presupposes, among other hypotheses, one which is entirely arbitrary, namely: that when the state of the system is given, external actions capable of maintaining it in that state are determined without ambiguity, by equations termed conditions of equilibrium of the system. If we reject this hypothesis, it will then be allowable to introduce into thermodynamics laws previously excluded, and it will be possible to construct, as M. Duhem has done, a much more comprehensive theory.
The ideas of M. Duhem have been illustrated by remarkable experimental work. M. Marchis, for example, guided by these ideas, has studied the permanent modifications produced in glass by an oscillation of temperature. These modifications, which may be called phenomena of the hysteresis of dilatation, may be followed in very appreciable fashion by means of a glass thermometer. The general results are quite in accord with the previsions of M. Duhem. M. Lenoble in researches on the traction of metallic wires, and M. Chevalier in experiments on the permanent variations of the electrical resistance of wires of an alloy of platinum and silver when submitted to periodical variations of temperature, have likewise afforded verifications of the theory propounded by M. Duhem.