One difficulty, however, arises from the fact that the principle ought only to be applied to an isolated system. Whether we imagine actions at a distance or believe in intermediate media, we must always recognise that there exist no bodies in the world incapable of acting on each other, and we can never affirm that some modification in the energy of a given place may not have its echo in some unknown spot afar off. This difficulty may sometimes render the value of the principle rather illusory.
Similarly, it behoves us not to receive without a certain distrust the extension by certain philosophers to the whole Universe, of a property demonstrated for those restricted systems which observation can alone reach. We know nothing of the Universe as a whole, and every generalization of this kind outruns in a singular fashion the limit of experiment.
Even reduced to the most modest proportions, the principle of the conservation of energy retains, nevertheless, a paramount importance; and it still preserves, if you will, a high philosophical value. M.J. Perrin justly points out that it gives us a form under which we are experimentally able to grasp causality, and that it teaches us that a result has to be purchased at the cost of a determined effort.
We can, in fact, with M. Perrin and M. Langevin, represent this in a way which puts this characteristic in evidence by enunciating it as follows: “If at the cost of a change C we can obtain a change K, there will never be acquired at the same cost, whatever the mechanism employed, first the change K and in addition some other change, unless this latter be one that is otherwise known to cost nothing to produce or to destroy.” If, for instance, the fall of a weight can be accompanied, without anything else being produced, by another transformation—the melting of a certain mass of ice, for example—it will be impossible, no matter how you set about it or whatever the mechanism used, to associate this same transformation with the melting of another weight of ice.
We can thus, in the transformation in question, obtain an appropriate number which will sum up that which may be expected from the external effect, and can give, so to speak, the price at which this transformation is bought, measure its invariable value by a common measure (for instance, the melting of the ice), and, without any ambiguity, define the energy lost during the transformation as proportional to the mass of ice which can be associated with it. This measure is, moreover, independent of the particular phenomenon taken as the common measure.
Sec. 3. THE PRINCIPLE OF CARNOT AND CLAUSIUS