This is what Professors Lummer and Pringsheim have shown in a series of studies which may certainly be reckoned among the greatest experimental researches of the last few years. They have constructed a radiator closely resembling the theoretically integral radiator which a closed isothermal vessel would be, and with only a very small opening, which allows us to collect from outside the radiations which are in equilibrium with the interior. This vessel is formed of a hollow carbon cylinder, heated by a current of high intensity; the radiations are studied by means of a bolometer, the disposition of which varies with the nature of the experiments.
It is hardly possible to enter into the details of the method, but the result sufficiently indicates its importance. It is now possible, thanks to their researches, to estimate a temperature of 2000 deg. C. to within about 5 deg. Ten years ago a similar approximation could hardly have been arrived at for a temperature of 1000 deg. C.
Sec. 6. DERIVED UNITS AND THE MEASURE OF A QUANTITY OF ENERGY
It must be understood that it is only by arbitrary convention that a dependency is established between a derived unit and the fundamental units. The laws of numbers in physics are often only laws of proportion. We transform them into laws of equation, because we introduce numerical coefficients and choose the units on which they depend so as to simplify as much as possible the formulas most in use. A particular speed, for instance, is in reality nothing else but a speed, and it is only by the peculiar choice of unit that we can say that it is the space covered during the unit of time. In the same way, a quantity of electricity is a quantity of electricity; and there is nothing to prove that, in its essence, it is really reducible to a function of mass, of length, and of time.
Persons are still to be met with who seem to have some illusions on this point, and who see in the doctrine of the dimensions of the units a doctrine of general physics, while it is, to say truth, only a doctrine of metrology. The knowledge of dimensions is valuable, since it allows us, for instance, to easily verify the homogeneity of a formula, but it can in no way give us any information on the actual nature of the quantity measured.
Magnitudes to which we attribute like dimensions may be qualitatively irreducible one to the other. Thus the different forms of energy are measured by the same unit, and yet it seems that some of them, such as kinetic energy, really depend on time; while for others, such as potential energy, the dependency established by the system of measurement seems somewhat fictitious.