Later, N. Specnew, inspired by the results arrived at by his predecessors, was led to investigate the influence of electricity on plants in every stage of their development; the results of his experiments were most satisfactory and of practical interest. He began by submitting different seeds to the action of an electric current, and found that their development was rendered more rapid and complete. He experimented with the seeds of haricot beans, sunflowers, winter and spring rye. Two lots, of twelve groups of one hundred and twenty seeds each, were plunged into water until they swelled, and while wet the seeds were introduced into long glass cylinders, open at both ends. Copper disks were pressed against the seeds, the disks were connected with the poles of an induction coil, the current was kept on for one or two minutes and immediately afterward the seeds were sown. The temperature was kept from 45 deg. to 50 deg. Fahrenheit, and the experiments repeated four times. The following table shows the results:
Peas. Beans. Barley. Sunflowers. Days. Days. Days. Days. Electrified seeds developed in 2.5 3 2 8.5 Non-electrified seeds developed in 4 6 5 15
It was also observed that the plants coming from electrified seeds were better developed, their leaves were much larger and their color brighter than in those plants growing from non-electrified seeds. The current did not affect the yield.
At the Botanical Gardens at Kew, the following experiment was tried:
Large plates of zinc and copper (0.445 meter and 0.712 meter) were placed in the soil and connected by wires, so arranged that the current passed through the ground; the arrangement was really a battery of (zinc | earth | copper). This method was applied to pot herbs and flowering plants and also to the growing of garden produce; in the latter case the result was a large crop and the vegetables grown were of enormous size.
Extensive experiments in electroculture were also made at Pskov, Russia. Plots of earth were sown to rye, corn, oats, barley, peas, clover and flax; around these respective plots were placed insulating rods, on the top of which were crown-shaped collectors—the latter connected by means of wires. Atmospheric electricity was thus collected above the seeds, and the latter matured in a highly electrified atmosphere; the plots were submitted to identical conditions and the experiments were carried on for five years. The results showed a considerable increase in the yield of seed and straw, the ripening was more rapid and the barley ripened nearly two weeks earlier with electroculture. Potatoes grown by the latter method were seldom diseased, only to 5 per cent., against 10 to 40 per cent. by ordinary culture.
Grandeau, at the School of Forestry at Nancy, found by experiment that the electrical tension always existing between the upper air and soil stimulated growth. He found plants protected from the influence were less vigorous than those subject to it.