Experimental Researches in Electricity, Volume 1 eBook

This eBook from the Gutenberg Project consists of approximately 775 pages of information about Experimental Researches in Electricity, Volume 1.

Experimental Researches in Electricity, Volume 1 eBook

This eBook from the Gutenberg Project consists of approximately 775 pages of information about Experimental Researches in Electricity, Volume 1.

[Illustration]

401.  A fourth arrangement was used for substances requiring very high temperatures for their fusion.  A platina wire was connected with one pole of the battery; its extremity bent into a small ring, in the manner described by Berzelius, for blowpipe experiments; a little of the salt, glass, or other substance, was melted on this ring by the ordinary blowpipe, or even in some cases by the oxy-hydrogen blowpipe, and when the drop, retained in its place by the ring, was thoroughly hot and fluid, a platina wire from the opposite pole of the battery was made to touch it, and the effects observed.

402.  The following are various substances, taken from very different classes chemically considered, which are subject to this law.  The list might, no doubt, be enormously extended; but I have not had time to do more than confirm the law by a sufficient number of instances.

First, water.

Amongst oxides;—­potassa, protoxide of lead, glass of antimony, protoxide of antimony, oxide of bismuth.

Chlorides of potassium, sodium, barium, strontium, calcium, magnesium, manganese, zinc, copper (proto-), lead, tin (proto-), antimony, silver.

Iodides of potassium, zinc and lead, protiodide of tin, periodide of mercury; fluoride of potassium; cyanide of potassium; sulpho-cyanide of potassium.

Salts. Chlorate of potassa; nitrates of potassa, soda, baryta, strontia, lead, copper, and silver; sulphates of soda and lead, proto-sulphate of mercury; phosphates of potassa, soda, lead, copper, phosphoric glass or acid phosphate of lime; carbonates of potassa and soda, mingled and separate; borax, borate of lead, per-borate of tin; chromate of potassa, bi-chromate of potassa, chromate of lead; acetate of potassa.

Sulphurets. Sulphuret of antimony, sulphuret of potassium made by reducing sulphate of potassa by hydrogen; ordinary sulphuret of potassa.

Silicated potassa; chameleon mineral.

403.  It is highly interesting in the instances of those substances which soften before they liquefy, to observe at what period the conducting power is acquired, and to what degree it is exalted by perfect fluidity.  Thus, with the borate of lead, when heated by the lamp upon glass, it becomes as soft as treacle, but it did not conduct, and it was only when urged by the blowpipe and brought to a fair red heat, that it conducted.  When rendered quite liquid, it conducted with extreme facility.

404.  I do not mean to deny that part of the increased conducting power in these cases of softening was probably due to the elevation of temperature (432. 445.); but I have no doubt that by far the greater part was due to the influence of the general law already demonstrated, and which in these instances came gradually, instead of suddenly, into operation.

405.  The following are bodies which acquired no conducting power upon assuming the liquid state:—­

Copyrights
Project Gutenberg
Experimental Researches in Electricity, Volume 1 from Project Gutenberg. Public domain.