301. The battery was then thrown out of use, and the communications so arranged that the current could be passed from the prime conductor, by the discharging rod held against it, through the wet string, through the galvanometer coil, and into the discharging train (292), by which it was finally dispersed. This current could be stopped at any moment, by removing the discharging rod, and either stopping the machine or connecting the prime conductor by another rod with the discharging train; and could be as instantly renewed. The needle was so adjusted, that whilst vibrating in moderate and small arcs, it required time equal to twenty-five beats of a watch to pass in one direction through the arc, and of course an equal time to pass in the other direction.
302. Thus arranged, and the needle being stationary, the current, direct from the machine, was sent through the galvanometer for twenty-five beats, then interrupted for other twenty-five beats, renewed for twenty-five beats more, again interrupted for an equal time, and so on continually. The needle soon began to vibrate visibly, and after several alternations of this kind, the vibration increased to 40 deg. or more.
303. On changing the direction of the current through the galvanometer, the direction of the deflection of the needle was also changed. In all cases the motion of the needle was in direction the same as that caused either by the use of the electric battery or a voltaic trough (300).
304. I now rejected the wet string, and substituted a copper wire, so that the electricity of the machine passed at once into wires communicating directly with the discharging train, the galvanometer coil being one of the wires used for the discharge. The effects were exactly those obtained above (302).
305. Instead of passing the electricity through the system, by bringing the discharging rod at the end of it into contact with the conductor, four points were fixed on to the rod; when the current was to pass, they were held about twelve inches from the conductor, and when it was not to pass, they were turned away. Then operating as before (302.), except with this variation, the needle was soon powerfully deflected, and in perfect consistency with the former results. Points afforded the means by which Colladon, in all cases, made his discharges.
306. Finally, I passed the electricity first through an exhausted receiver, so as to make it there resemble the aurora borealis, and then through the galvanometer to the earth; and it was found still effective in deflecting the needle, and apparently with the same force as before.
307. From all these experiments, it appears that a current of common electricity, whether transmitted through water or metal, or rarefied air, or by means of points in common air, is still able to deflect the needle; the only requisite being, apparently, to allow time for its action: that it is, in fact, just as magnetic in every respect as a voltaic current, and that in this character therefore no distinction exists.