219. A copper cylinder, closed at one extremity, was then put over the magnet, one half of which it inclosed like a cap; it was firmly fixed, and prevented from touching the magnet anywhere by interposed paper. The arrangement was then floated in a narrow jar of mercury, so that the lower edge of the copper cylinder touched the fluid metal; one wire of the galvanometer dipped into this mercury, and the other into a little cavity in the centre of the end of the copper cap. Upon rotating the magnet and its attached cylinder, abundance of electricity passed through the galvanometer, and in the same direction as if the cylinder had rotated only, the magnet being still. The results therefore were the same as those with the disc (218.).
220. That the metal of the magnet itself might be substituted for the moving cylinder, disc, or wire, seemed an inevitable consequence, and yet one which would exhibit the effects of magneto-electric induction in a striking form. A cylinder magnet had therefore a little hole made in the centre of each end to receive a drop of mercury, and was then floated pole upwards in the same metal contained in a narrow jar. One wire from the galvanometer dipped into the mercury of the jar, and the other into the drop contained in the hole at the upper extremity of the axis. The magnet was then revolved by a piece of string passed round it, and the galvanometer-needle immediately indicated a powerful current of electricity. On reversing the order of rotation, the electrical current was reversed. The direction of the electricity was the same as if the copper cylinder (219.) or a copper wire had revolved round the fixed magnet in the same direction as that which the magnet itself had followed. Thus a singular independence of the magnetism and the bar in which it resides is rendered evident.
221. In the above experiment the mercury reached about halfway up the magnet; but when its quantity was increased until within one eighth of an inch of the top, or diminished until equally near the bottom, still the same effects and the same direction of electrical current was obtained. But in those extreme proportions the effects did not appear so strong as when the surface of the mercury was about the middle, or between that and an inch from each end. The magnet was eight inches and a half long, and three quarters of an inch in diameter.
222. Upon inversion of the magnet, and causing rotation in the same direction, i.e. always screw or always unscrew, then a contrary current of electricity was produced. But when the motion of the magnet was continued in a direction constant in relation to its own axis, then electricity of the same kind was collected at both poles, and the opposite electricity at the equator, or in its neighbourhood, or in the parts corresponding to it. If the magnet be held parallel to the axis of the earth, with its unmarked pole directed to the pole star, and then rotated so that the parts at its southern side pass from west to east in conformity to the motion of the earth; then positive electricity may be collected at the extremities of the magnet, and negative electricity at or about the middle of its mass.