1721. A plate of copper 0.7 of an inch thick and six inches square, was placed between coils C and B, their respective distances remaining unchanged; and then a voltaic current from twenty pairs of 4 inch plates was sent through the coil C, and intermitted, in periods fitted to produce an effect on the galvanometer (1712.). if any difference had been produced in the effect of C on A and B. But notwithstanding the presence of air in one interval and copper in the other, the inductive effect was exactly alike on the two coils, and as if air had occupied both intervals. So that notwithstanding the facility with which any induced currents might form in the thick copper plate, the coil outside of it was just as much affected by the central helix C as if no such conductor as the copper had been there (65.).
1722. Then, for the copper plate was substituted one of sulphur 0.9 of an inch thick; still the results were exactly the same, i.e. there was no action at the galvanometer.
1723. Thus it appears that when a voltaic current in one wire is exerting its inductive action to produce a contrary or a similar current in a neighbouring wire, according as the primary current is commencing or ceasing, it makes not the least difference whether the intervening space is occupied by such insulating bodies as air, sulphur and shell-lac, or such conducting bodies as copper, and the other non-magnetic metals.
1724. A correspondent effect was obtained with the like forces when resident in a magnet thus. A single flat helix (1718.) was connected with a galvanometer, and a magnetic pole placed near to it; then by moving the magnet to and from the helix, or the helix to and from the magnet, currents were produced indicated by the galvanometer.
1725. The thick copper plate (1721.) was afterwards interposed between the magnetic pole and the helix; nevertheless on moving these to and fro, effects, exactly the same in direction and amount, were obtained as if the copper had not been there. So also on introducing a plate of sulphur into the interval, not the least influence on the currents produced by motion of the magnet or coils could be obtained.
1726. These results, with many others which I have not thought it needful to describe, would lead to the conclusion that (judging by the amount of effect produced at a distance by forces transverse to the electric current, i.e. magnetic forces,) the intervening matter, and therefore the intervening particles, have nothing to do with the phenomena; or in other words, that though the inductive force of static electricity is transmitted to a distance by the action of the intermediate particles (1164. 1666.), the transverse inductive force of currents, which can also act at a distance, is not transmitted by the intermediate particles in a similar way.