1585. When the discharging ball was brought near the drop in its first quiet glowing state (1582.), it converted that glow into brushes, and caused the vibrating motion of the drop. When still nearer, sparks passed, but they were always from the metal of the rod, over the surface of the water, to the point, and then across the air to the ball. This is a natural consequence of the deficient conducting power of the fluid (1584. 1585.).
1586. Why the drop vibrated, changing its form between the periods of discharging brushes, so as to be more or less acute at particular instants, to be most acute when the brush issued forth, and to be isochronous in its action, and how the quiet glowing liquid drop, on assuming the conical form, facilitated, as it were, the first action, are points, as to theory, so evident, that I will not stop to speak of them. The principal thing to observe at present is, the formation of the carrying current of air, and the manner in which it exhibits its existence and influence by giving form to the drop.
1587. That the drop, when of water, or a better conductor than water, is formed into a cone principally by the current of air, is shown amongst other ways (1594.) thus. A sharp point being held opposite the conical drop, the latter soon lost its pointed form; was retraced and became round; the current of air from it ceased, and was replaced by one from the point beneath, which, if the latter were held near enough to the drop, actually blew it aside, and rendered it concave in form.
1588. It is hardly necessary to say what happened with still worse conductors than water, as oil, or oil of turpentine; the fluid itself was then spun out into threads and carried off, not only because the air rushing over its surface helped to sweep it away, but also because its insulating particles assumed the same charged state as the particles of air, and, not being able to discharge to them in a much greater decree than the air particles themselves could do, were carried off by the same causes which urged those in their course. A similar effect with melted sealing-wax on a metal point forms an old and well-known experiment.
1589. A drop of gum water in the exhausted receiver of the air-pump was not sensibly affected in its form when electrified. When air was let in, it begun to show change of shape when the pressure was ten inches of mercury. At the pressure of fourteen or fifteen inches the change was more sensible, and as the air increased in density the effects increased, until they were the same as those in the open atmosphere. The diminished effect in the rare air I refer to the relative diminished energy of its current; that diminution depending, in the first place, on the lower electric condition of the electrified ball in the rarefied medium, and in the next, on the attenuated condition of the dielectric, the cohesive force of water in relation to rarefied air being something like that of mercury to dense air (1581.), whilst that of water in dense air may be compared to that of mercury in oil of turpentine (1597.).