1561. What I have had to say regarding disruptive discharge has extended to some length, but I hope will be excused in consequence of the importance of the subject. Before concluding my remarks, I will again intimate in the form of a query, whether we have not reason to consider the tension or retention and after discharge in air or other insulating dielectrics, as the same thing with retardation and discharge in a metal wire, differing only, but almost infinitely, in degree (1334. 1336.). In other words, can we not, by a gradual chain of association, carry up discharge from its occurrence in air, through spermaceti and water, to solutions, and then on to chlorides, oxides and metals, without any essential change in its character; and, at the same time, connecting the insensible conduction of air, through muriatic acid gas and the dark discharge, with the better conduction of spermaceti, water, and the all but perfect conduction of the metals, associate the phenomena at both extremes? and may it not be, that the retardation and ignition of a wire are effects exactly correspondent in their nature to the retention of charge and spark in air? If so, here again the two extremes in property amongst dielectrics will be found to be in intimate relation, the whole difference probably depending upon the mode and degree in which their particles polarize under the influence of inductive actions (1338. 1603. 1610.).
* * * * *
P x. Convection, or carrying discharge.
1562. The last kind of discharge which I have to consider is that effected by the motion of charged particles from place to place. It is apparently very different in its nature to any of the former modes of discharge (1319.), but, as the result is the same, may be of great importance in illustrating, not merely the nature of discharge itself, but also of what we call the electric current. It often, as before observed, in cases of brush and glow (1440. 1535.), joins its effect to that of disruptive discharge, to complete the act of neutralization amongst the electric forces.
1563. The particles which being charged, then travel, may be either of insulating or conducting matter, large or small. The consideration in the first place of a large particle of conducting matter may perhaps help our conceptions.
1564. A copper boiler 3 feet in diameter was insulated and electrified, but so feebly, that dissipation by brushes or disruptive discharge did not occur at its edges or projecting parts in a sensible degree. A brass ball, 2 inches in diameter, suspended by a clean white silk thread, was brought towards it, and it was found that, if the ball was held for a second or two near any part of the charged surface of the boiler, at such distance (two inches more or less) as not to receive any direct charge from it, it became itself charged, although insulated the whole time; and its electricity was the reverse of that of the boiler.