1540. The rounded end of a brass rod, 0.3 of an inch in diameter, was covered with a positive glow by the working of an electrical machine: on stopping the machine, so that the charge of the connected conductor should fall, the glow changed for a moment into brushes just before the discharge ceased altogether, illustrating the necessity for a certain high continuous charge, for a certain sized termination. Working the machine so that the intensity should be just low enough to give continual brushes from the end in free air, the approach of a fine point changed these brushes into a glow. Working the machine so that the termination presented a continual glow in free air, the gradual approach of the hand caused the glow to contract at the very end of the wire, then to throw out a luminous point, which, becoming a foot stalk (1426.), finally produced brushes with large ramifications. All these results are in accordance with what is stated above (1539.).
1541. Greasing the end of a rounded wire will immediately make it produce brushes instead of glow. A ball having a blunt point which can be made to project more or less beyond its surface, at pleasure, can be made to produce every gradation from glow, through brush, to spark.
1542. It is also very interesting and instructive to trace the transition from spark to glow, through the intermediate condition of stream, between ends in a vessel containing air more or less rarefied; but I fear to be prolix.
1543. All the effects show, that the glow is in its nature exactly the same as the luminous part of a brush or ramification, namely a charging of air; the only difference being, that the glow has a continuous appearance from the constant renewal of the same action in the same place, whereas the ramification is due to a momentary, independent and intermitting action of the same kind.
* * * * *
Dark discharge.
1544. I will now notice a very remarkable circumstance in the luminous discharge accompanied by negative glow, which may, perhaps, be correctly traced hereafter into discharges of much higher intensity. Two brass rods, 0.3 of an inch in diameter, entering a glass globe on opposite sides, had their ends brought into contact, and the air about them very much rarefied. A discharge of electricity from the machine was then made through them, and whilst that was continued the ends were separated from each other. At the moment of separation a continuous glow came over the end of the negative rod, the positive termination remaining quite dark. As the distance was increased, a purple stream or haze appeared on the end of the positive rod, and proceeded directly outwards towards the negative rod; elongating as the interval was enlarged, but never joining the negative glow, there being always a short dark space between. This space, of about 1/16th or 1/20th of an inch, was apparently invariable in its extent and its position, relative to the negative rod; nor did the negative glow vary. Whether the negative end were inductric or inducteous, the same effect was produced. It was strange to see the positive purple haze diminish or lengthen as the ends were separated, and yet this dark space and the negative glow remain unaltered (fig. 133).