163. A compound magnetic needle was used to detect the currents. It was arranged thus: a sewing-needle had the head and point broken off, and was then magnetised; being broken in halves, the two magnets thus produced were fixed on a stem of dried grass, so as to be perpendicular to it, and about four inches asunder; they were both in one plane, but their similar poles in contrary directions. The grass was attached to a piece of unspun silk about six inches long, the latter to a stick passing through a cork in the mouth of a cylindrical jar; and thus a compound arrangement was obtained, perfectly sheltered from the motion of the air, but little influenced by the magnetism of the earth, and yet highly sensible to magnetic and electric forces, when the latter were brought into the vicinity of the one or the other needle.
164. Upon adjusting the needles to the plane of the magnetic meridian; arranging the ball on the outside of the glass jar to the west of the needles, and at such a height that its centre should correspond horizontally with the upper needle, whilst its axis was in the plane of the magnetic meridian, but perpendicular to the dip; and then rotating the ball, the needle was immediately affected. Upon inverting the direction of rotation, the needle was again affected, but in the opposite direction. When the ball revolved from east over to west, the marked pole went eastward; when the ball revolved in the opposite direction, the marked pole went westward or towards the ball. Upon placing the ball to the east of the needles, still the needle was deflected in the same way; i.e. when the ball revolved from east over to west, the marked pole wont eastward (or towards the ball); when the rotation was in the opposite direction, the marked pole went westward.
165. By twisting the silk of the needles, the latter were brought into a position perpendicular to the plane of the magnetic meridian; the ball was again revolved, with its axis parallel to the needles; the upper was affected as before, and the deflection was such as to show that both here and in the former case the needle was influenced solely by currents of electricity existing in the brass globe.
166. If the upper part of the revolving ball be considered as a wire moving from east to west, over the unmarked pole of the earth, the current of electricity in it should be from north to south (99. 114. 150.); if the under part be considered as a similar wire, moving from west to east over the same pole, the electric current should be from south to north; and the circulation of electricity should therefore be from north above to south, and below back to north, in a metal ball revolving from east above to west in these latitudes. Now these currents are exactly those required to give the directions of the needle in the experiments just described; so that the coincidence of the theory from which the experiments were deduced with the experiments themselves, is perfect.