1379. Fusinieri took a different view from that of Poisson, Biot, and others, of the reason why rarefaction of air caused easy diffusion of electricity. He considered the effect as due to the removal of the obstacle which the air presented to the expansion of the substances from which the electricity passed[A]. But platina balls show the phenomena in vacuo as well as volatile metals and other substances; besides which, when the rarefaction is very considerable, the electricity passes with scarcely any resistance, and the production of no sensible heat; so that I think Fusinieri’s view of the matter is likely to gain but few assents.
[A] Bib. Univ. 1831, xlviii. 375.
1380. I have no need to remark upon the discharging or collecting power of flame or hot air. I believe, with Harris, that the mere heat does nothing (1367.), the rarefaction only being influential. The effect of rarefaction has been already considered generally (1375.); and that caused by the heat of a burning light, with the pointed form of the wick, and the carrying power of the carbonaceous particles which for the time are associated with it, are fully sufficient to account for all the effects.
1381. We have now arrived at the important question, how will the inductive tension requisite for insulation and disruptive discharge be sustained in gases, which, having the same physical state and also the same pressure and the same temperature as air, differ from it in specific gravity, in chemical qualities, and it may be in peculiar relations, which not being as yet recognized, are purely electrical (1361.)?
1382. Into this question I can enter now only as far as is essential for the present argument, namely, that insulation and inductive tension do not depend merely upon the charged conductors employed, but also, and essentially, upon the interposed dielectric, in consequence of the molecular action of its particles (1292.).
1383. A glass vessel a (fig. 127.)[A] was ground at the top and bottom so as to be closed by two ground brass plates, b and c; b carried a stuffing-box, with a sliding rod d terminated by a brass ball s below, and a ring above. The lower plate was connected with a foot, stop-cock, and socket, e, f and g; and also with a brass ball l, which by means of a stem attached to it and entering the socket g, could be fixed at various heights. The metallic parts of this apparatus were not varnished, but the glass was well-covered with a coat of shell-lac previously dissolved in alcohol. On exhausting the vessel at the air-pump it could be filled with any other gas than air, and, in such cases, the gas so passed in was dried whilst entering by fused chloride of calcium.
[A] The drawing is to a scale of 1/6.