1372. The effect of enlarging the conducting surfaces which are opposed to each other in the act of induction, is, if the electricity be limited in its supply, to lower the intensity of action; and this follows as a very natural consequence from the increased area of the dielectric across which the induction is effected. For by diffusing the inductive action, which at first was exerted through one square inch of sectional area of the dielectric, over two or three square inches of such area, twice or three times the number of molecules of the dielectric are brought into the polarized condition, and employed in sustaining the inductive action, and consequently the tension belonging to the smaller number on which the limited force was originally accumulated, must fall in a proportionate degree.
1373. For the same reason diminishing these opposing surfaces must increase the intensity, and the effect will increase until the surfaces become points. But in this case, the tension of the particles of the dielectric next the points is higher than that of particles midway, because of the lateral action and consequent bulging, as it were, of the lines of inductive force at the middle distance (1369.).
1374. The more exalted effects of induction on a point p, or any small surface, as the rounded end of a rod, when it is opposed to a large surface, as that of a ball or plate, rather than to another point or end, the distance being in both cases the same, fall into harmonious relation with my theory (1302.). For in the latter case, the small surface p is affected only by those particles which are brought into the inductive condition by the equally small surface of the opposed conductor, whereas when that is a ball or plate the lines of inductive force from the latter are concentrated, as it were, upon the end p. Now though the molecules of the dielectric against the large surface may have a much lower state of tension than those against the corresponding smaller surface, yet they are also far more numerous, and, as the lines of inductive force converge towards a point, are able to communicate to the particles contained in any cross section (1369.) nearer the small surface an amount of tension equal to their own, and consequently much higher for each individual particle; so that, at the surface of the smaller conductor, the tension of a particle rises much, and if that conductor were to terminate in a point, the tension would rise to an infinite degree, except that it is limited, as before (1368.), by discharge. The nature of the discharge from small surfaces and points under induction will be resumed hereafter (1425. &c.)